

Component-Based Crawling of Complex

Rich Internet Applications

Ali Moosavi

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the degree of

Master of Computer Science

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

© Ali Moosavi, Ottawa, Canada, 2013

ii

Abstract

During the past decade, web applications have evolved substantially. Taking advantage of

new technologies, Rich Internet Applications (RIAs) make heavy use of client side code to

present content. Web crawlers, however, face new challenges in crawling RIAs. The

problem of crawling RIAs has been a focus for researchers during recent years, and

solutions have been proposed based on constructing a state-transition model with DOMs as

states and JavaScript events as transitions. When faced with real-life RIAs, however, a major

problem prevalent in current solutions is state space explosion caused by the complexity of

the RIAs. This problem prevents the automated crawlers from being usable on complex RIAs

as they fail to produce useful results in a timely fashion. This research addresses the

challenge of efficiently crawling complex RIAs with two main ideas: component-based

crawling and similarity detection. Our experimental results show that these ideas lead to a

drastic reduction of the time required to produce results, enabling the crawler to explore

RIAs previously too complex for automated crawl.

iii

Acknowledgement

I would like express my gratitude to my supervisor, Dr. Guy-Vincent Jourdan and my co-

supervisor Dr. Iosif Viorel Onut for their constant support and motivation throughout my

graduate studies. Their patience and guidance made this work of research possible. I would

like to thank Dr. Gregor von Bochmann for his engagement in the project and providing

insightful inputs.

I cannot be more thankful to my parents, Seyed Khalil Moosavi and Fakhrolsadat Moosavi

for all their love and support. Without them, living abroad and studying at postgraduate

level would be impossible for me.

I am very grateful to my colleagues in Software Security Research Group at University of

Ottawa Emre Dincturk, Salman Hooshmand, Suryakant Choudhary, Seyed M. Mirtaheri, Di

Zou, and Khaled ben Hafaiedh for accompanying and helping me during this whole time,

and staying by my side as friends.

Finally, I would like to acknowledge financial support of the National Sciences and

Engineering Research Council (NSERC), and IBM Center of Advanced Studies (CAS).

iv

Table of Contents

Table of Contents.. iv

Table of Figures ... vii

List of Tables ... ix

1. Introduction ... 1

 Crawling RIAs .. 2

 Challenges .. 3

 The State of the Art Solution: The State-Transition Model 5

 Motivations ... 6

 List of Contributions .. 7

 Organization of the Thesis ... 8

2. The State of the Art .. 9

 Introduction .. 9

 Architecture of an AJAX-based RIA ... 10

 The State-Transition Model .. 12

 Assumptions .. 15

 Use in the literature ... 16

 The Problem: State Space Explosion .. 18

3. Component-based Crawling ... 21

 Problem Statement .. 21

 Solution Overview .. 24

v

 Model Elaboration .. 27

 Constraints on Component Definitions ... 32

 Component Locations .. 33

 Algorithm Elaboration .. 37

 Violations ... 41

 Conclusion .. 43

4. Experimental Results .. 44

 Experimental Setup .. 44

 Candidate Methods ... 44

 Variables to Measure ... 45

 Cost Metrics... 46

 Implementation ... 47

 Coverage Verification ... 48

 Test Cases ... 49

 Comparison on subject RIAs .. 57

 Exploration Cost .. 57

 Time .. 59

 Model Size ... 61

 Scalability Tests .. 65

 Summary .. 69

5. Similarity Detection ... 70

 Problem Statement .. 70

vi

 Solution Overview .. 74

 Solution Elaboration ... 78

 Experimental Results .. 84

 Conclusion .. 90

6. Conclusions and Future Work... 91

References ... 94

vii

Table of Figures

Figure 1: Example of asynchronous communication using AJAX calls 11

Figure 2. An example of a simple state-transition model ... 12

Figure 3. Example of a new DOM-state with no new data. .. 22

Figure 4. A webpage and components on the page. .. 25

Figure 5. An event execution modelled with DOM-states and component-states 29

Figure 6. The StateDictionary .. 31

Figure 7. Part of a shopping website’s DOM .. 34

Figure 8. Architecture of our crawler .. 47

Figure 9. TestRIA .. 51

Figure 10. A screenshot of Altoro Mutual .. 52

Figure 11. ClipMarks ... 53

Figure 12. Periodic Table RIA .. 54

Figure 13. A snapshot of our simplified version of elFinder ... 55

Figure 14. Bebop .. 56

Figure 15. Comparison of exploration costs of finishing crawl for different methods 58

Figure 17. The Altoro Mutual website modelled at DOM level and component level 64

Figure 18. The TestRIA website modelled at DOM level and component level 64

Figure 19. The ClipMarks website modelled at DOM level and at component level 65

viii

Figure 20. Time of crawling ClipMarks as the number of items in the website increase 66

Figure 21. Time of crawling Bebop RIA as the number of items increases 67

Figure 22. Time of crawling elFinder as the number of files in the RIA browser increases 68

Figure 23. Examples of some similar events on Facebook.com .. 71

Figure 24. Finding dissimilar content in TestRIA .. 85

Figure 25. Finding dissimilar content in ClipMarks with 3 list items 86

Figure 26. Finding dissimilar content in ClipMarks with 40 list items 87

Figure 27. Finding dissimilar content in Altoro Mutual .. 87

Figure 29. Finding dissimilar content in elFinder ... 89

ix

List of Tables

Table1. Exploration costs of finishing crawl for different methods 58

Table 2. Time of finishing crawl for different methods .. 60

Table 3. Size of the obtained models using DOM-based crawling and Component-based

crawling ... 62

Table4. Time of crawling ClipMarks RIA with various numbers of items 66

Table 5.Time of crawling Bebop RIA with various numbers of items 67

Table 6. Time of crawling elFinder RIA with various numbers of files to browse 69

1

1. Introduction

In today’s world, crawlers are in charge of various tasks. They need to adapt to the ever-

changing web technologies and trends. Traditionally, web applications consisted of a set of

pages accessible through unique URLs. The server side carried out any computations and

the client side was only responsible for rendering the results. Later, newer web

technologies such as AJAX [1], Flash [2] and HTML5 [3] transformed this architecture and

enabled a new breed of web applications called Rich Internet Applications (RIAs). RIAs

provide more sophisticated client side functionality, improving user experience and

reducing communication between the client side and the server side. Today, these

technologies are in widely used. Crawlers, however, have problems in exploring RIAs

automatically. Several studies have been conducted around crawling and testing RIAs in

general, and AJAX-based RIAs in particular. Current solutions in this recent research area

present limited capabilities and fail to operate effectively on complex examples. To our

knowledge, currently, no major industrial players use real RIA crawling techniques. Instead,

they ask RIA owners to provide their content in a crawler-friendly manner [4]. This research

work focuses on developing crawling solutions with acceptable performance on large-scale

and complex AJAX-based RIAs, with the aim of creating technology that suits industrial

needs.

In this chapter we discuss crawlers and why they face challenges when dealing with RIAs in

section 1.1. We then describe an existing shortcoming in the current solution that is in use

by research prototypes, and the importance of resolving this issue in section 1.2. Finally, in

2

section 1.3 we summarize the contributions of this research work in addressing this

challenge.

 Crawling RIAs

Crawling is the process of exploring a web application automatically. Crawlers are essential

tools in today’s world of web-oriented applications and services. Crawlers are used for a

variety of purposes, such as content indexing (for example for use by a search engine) [5]

[6], automated regression testing (as part of software development process) [7], black-box

security and accessibility assessment [8], [9].

With the advent of new web technologies such as AJAX and Flash, there has been a shift in

web applications design towards putting more complexity on the client side in the form of

executable code. Increasingly, more and more modern web applications rely heavily on

client-side code to fetch and present their content. By using these technologies RIAs can

make incremental updates to the client state of the application, rather than loading

complete pages from the server. In the case AJAX-based RIAs, for example, the application

can use JavaScript code to manipulate the DOM on the client side, optionally contacting

sever and adding new data to client state without changing the URL.

As these technologies are already in widespread use, it is more important than ever before

for crawlers to support them. While using these technologies has provided benefits for

users such as increased interactivity and responsiveness, they introduce challenges for

crawlers.

3

 Challenges

Traditional methods of crawling are not sufficient to cover complete content of a RIA, since

these methods are built on assumptions that are no longer valid in RIAs. Traditionally,

crawlers use Unified Resource Locators (URLs) to navigate through the web. A web crawler

is fed with a list of seed URLs that it starts from. For each URL, it loads the page and adds

any URLs linked from that page to its working queue [10]. If the link is already visited, there

is no need to visit it again. Once all discovered URLs are visited, the crawling job is finished,

as it has covered all the content that is reachable from the seed URLs via hyperlinks. This

method is based on the assumption that URLs correspond to client states. While this

method is sufficient for crawling traditional web applications, RIAs break the functionality

of this method in two ways.

Firstly, as stated earlier, a RIA can update its client state without making a change in the

URL. Therefore, client states in RIAs no longer have a one-to-one correspondence to URLs.

Executable objects on the client side can alter the client state and present new data that is

important for the crawler, with or without contacting the server. Therefore, the crawler

should have a clear distinction between client states and URLs, as now many client states

are possible within the same URL. In the case of AJAX-based RIAs, it is executing JavaScript

Events (simply called ‘events’ in this thesis) that can alter the client state, and replace the

use of URLs in traditional web applications as a means to reach different states. It is

possible to build a complete RIA with a single URL using AJAX. As a result, only visiting URLs

is not sufficient to cover the content of a RIA anymore. To ensure content coverage, the

crawler should have a method to explore all client states under the same URL.

4

Secondly, events have a more complicated behaviour than URLs. It is usually safe to assume

that navigating to the same URL, from anywhere in the website, will always result in the

same webpage. This is not the case for events, though. The result of execution of an event

has more determinant factors than that of navigating to a URL. Since events can read data

from the client state of the application to determine what to do, they can be “state-

dependent”. The crawler needs to examine the same state-dependent event from different

client states in order to ensure proper coverage.

Due to the aforementioned challenges, crawling RIAs needs different techniques and

methods than crawling traditional web applications. Currently, industrial search engines

provide no better solution other than asking RIA owners to manually provide “html

snapshots” of their content to make them searchable [4]. This approach puts the burden of

providing information on the shoulders of the programmers instead of crawlers, and

enforces a big maintenance cost since html snapshots are to be manually kept up-to-date

whenever there is an update to the RIA. This contradicts the goal of crawlers whose

purpose is to aid in maintenance of a web application by automatic scanning and reporting

issues.

The problem of crawling AJAX-based RIAs has been a focus of research studies during the

past few years. These research works commonly use a state-transition model to represent a

RIA, which is introduced briefly in the following section.

5

 The State of the Art Solution: The State-Transition Model

Common approach for RIA crawling in the studies is to define client states based on the

Document Object Model (DOM) on the client. The RIA is then modelled as a finite state

machine, where DOMs are represented as states and event executions are represented as

transitions. By executing events, the crawler can navigate the RIA and reach different DOM-

states. The problem of crawling a RIA is then modelled as walking in an unexplored directed

graph. This model and its assumptions and limitations will be elaborated in Chapter 2,

together with the approaches in the literature for crawling RIAs using this model.

The research topic of crawling RIAs is relatively new and the amount of research work in

this area is limited. Research works mostly focus on other aspects of RIA crawling, such as

parallelizing the crawl or performing security tests using the extracted model. While these

works have been successfully applied to sample test cases, their applicability is subject to

the limitations of the crawling method they use. To our knowledge, the state-transition

model is the only major model presented for crawling complete content of RIAs, and

several research projects use it in their crawling method. This model, however, quickly loses

scalability as the RIA complexity grows.

Many RIAs today are feature-rich applications, rather than merely a set of pages. These

“complex RIAs” have several functionalities, each acting independently of the others.

Examples include social networking sites, widget-based RIAs, Content Management

Systems and more. The user is free to choose among many actions at all times, and each

different combination of these actions shapes the DOM differently. The state-transition

6

model faces a state space explosion problem when applied to complex RIAs. This problem is

the main motivation behind this research to develop methods of crawling that can run on

complex RIAs.

 Motivations

A major challenge affecting current research works is state space explosion. This problem

has been reported several times in publications from various research teams working in this

area [11], [12], [13]. Real-life RIAs tend to produce a large number of states in the state-

transition model. Even a RIA with a limited set of functionalities can easily present a large

number of different DOMs, the majority of which do not contain interesting information for

the crawler. For example, many new DOMs can be generated simply by presenting a

different combination of already-presented data. As a result, not only does the crawl take

an excessive amount of time, and the user might have to terminate the crawl prematurely,

but this also leads to the production of extremely large models, which in turn makes

analyzing or testing the model expensive and impractical [14]. Moreover, in the presence of

time limits, the crawler might spend its valuable time on exhaustive crawling of irrelevant

regions of the RIA, leading to a model that has poor functionality coverage despite its large

size.

Without a proper crawling method that can grasp complex RIAs and deduce a reasonable-

sized model from them, tools that rely on crawling will be unusable for real-life scenarios.

Tools and techniques developed in research studies need to be able to handle industrial use

7

cases in a timely manner in order to be applicable in industrial needs. This research is partly

funded by IBM, with the aim of developing a crawling method suitable for industrial use.

We aim to address the challenge of crawling complex RIAs by introducing a novel method

for crawling, called “Component-Based Crawling”. Component-based Crawling breaks

down the state space by capturing independent portions of the DOM tree and assigning

separate states to them. Component-based crawling is able to cover complete content of a

RIA in a substantially more efficient manner than the current methods, without running into

state space explosion where current methods do. We also present a useful technique

“Similarity Detection”, which helps covering as much functionality of the RIA as possible in

a limited time by detecting similar structures and events and avoiding them in order to

diversify the crawl. Both the methods are filed by IBM as patents [15], [16] and

implemented in prototype versions of IBM AppScan Enterprise (ASE) [17].

 List of Contributions

The major contributions of this work are summarized in the following list:

−−−− A meta-model for expressing a RIA as a set of independent components and their

interactions

−−−− An algorithm for crawling complex RIAs using the abovementioned meta-model

−−−− An algorithm and criterion for predicting similar portions of a RIA and diversifying

the crawl

Moreover, in order to achieve and validate the above-mentioned goals, we also provide:

8

−−−− Implementation of the abovementioned techniques as a working RIA crawler

−−−− Experimental studies on the performance of the abovementioned techniques and

comparison against state of the art techniques

−−−− Experimental studies on the scalability of component-based crawling as data in a RIA

grows

 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 provides a detailed description of the state-transition model, its assumptions and

limitations. It discusses how state of the art research works define the model, and attempt

to avoid state space explosion. Chapter 3 describes the Component-Based Crawling method

by first describing the meta-model and then the algorithm that uses the meta-model for

crawling. Chapter 4 provides our experimental results on the effectiveness of this method.

Chapter 5 describes the Similarity Detection technique, and Chapter 6 provides conclusion

marks possible future directions for this work of research.

9

2. The State of the Art

In this chapter, we present an overview of current research for crawling AJAX-Based RIAs.

After a brief introduction to some concepts in this field in section 2.1, in section 2.2 we

provide a detailed description of the State-Transition model, the method commonly used

for crawling RIAs. We then follow with a discussion on how different studies use various

versions of this model. Next, in section 2.3 we discuss the state space explosion problem,

various techniques proposed in the literature for tackling this problem and their

effectiveness, before introducing our proposed techniques in latter chapters.

 Introduction

There are a few terms and abbreviations used in this document that might need description

for a reader unfamiliar with this topic. When a browser loads an HTML document, it builds a

“DOM” (Document Object Model), which is a structural representation of the document

[18]. The DOM provides a language independent interface for scripting languages such as

JavaScript [19] to access the structure of the document. The browser allows these scripting

languages to modify the DOM, and renders the modifications for the user. When the client

reloads the URL of the document (i.e. issues a “reset”), the document is fetched from the

server again and the DOM is rebuilt to its initial un-modified state. “AJAX“(Asynchronous

JavaScript and XML) is a technology that allows the client side JavaScript code to

communicate with a server asynchronously (in the background) without interfering with the

display and behavior of the existing page [20].

10

In order to locate nodes in a DOM (or an XML document), a standard query language called

XPath (XML Path Language) is used [21]. A node’s path representation using XPath is not

unique, as XPath syntax allows several ways to query nodes. Likewise, an XPath query may

return multiple nodes. The way we utilize XPath queries in this work is discussed in

section 3.3.2.

 Architecture of an AJAX-based RIA

Web applications use a client-server architecture. The state of the client side of the

application consists of the DOM tree, the URL, possible cookies, etc. In RIAs, the client must

also provide an execution environment to encompass and run the client side code of the

RIA, therefore there are additional elements that determine the client state (e.g. the value

of JavaScript variables in an AJAX-Based RIA). In an AJAX-Based RIA, triggering execution of

a JavaScript event can result in changes to the client state, and possible message exchanges

with the server, making a change in the server state as well. Crawlers, just like users, do not

have access to the server state. They typically make certain assumptions about the server

states to assume completeness of their crawl. For example, the simplest form of

assumption would be inexistence of server states, in which case the crawler is allowed to

cache client states and restore them at will, without informing the server.

11

AJAX, as its full name suggests, provides the possibility of asynchronous communication

between the client and the server. Asynchronous communication means that when the

browser sends a request to the server, it does not block the user and allows her to continue

interacting with the web application. Therefore, the user can generate more requests to the

server at the same time she is waiting for the response of the previous requests. An

asynchronous interaction scenario with AJAX is depicted in Figure 1.

Figure 1: Example of asynchronous communication using AJAX calls (appeared in [42])

12

Upon sending an AJAX request to server, one must also specify its callback method. The

callback method is the code that is to be run when the response arrives, to handle the

response data. The callback method can modify the client state using the data received, for

example updating part of the DOM.

 The State-Transition Model

Common approach in studies is to model a RIA as a finite state machine (FSM), and use

DOM as an identifier for client states. In the FSM, states represent DOMs and transitions

Figure 2. An example of a simple state-transition model

13

represent event executions. Events can lead from one DOM-state1 to another.

The FSM can be defined as a tuple � = (�, ��,Σ, �) where S is the set of DOM-states, s1 is

the initial DOM-state (when the URL of the RIA is loaded), Σ is the set of events, and � is a

function � ×Σ → S that defines the set of valid transitions. At any given time, the

application is in one DOM-state, referred to as the current DOM-state. When	�(��, �) = ��,

it means that we can reach to DOM-state �� by executing event � from DOM-state	��. Not

all events are available in all DOM-states; therefore, � is a partial function.

One simplifying assumption that is usually made is that the behaviour of the RIA is

deterministic from the point of view of the crawler. This means that if we go back to a

visited DOM-state using valid transitions and execute an event that we had explored

before, the resulting DOM-state will be the same as before. Hence we are allowed to model

the RIA as a deterministic FSM. Based on this assumption, by executing each event form

each DOM-state once and building a complete FSM model, the crawler can assume the

crawling is done, and that the resulting FSM is a representative model of the system.

However, the crawler is not allowed jump to arbitrary DOM-states at will (e.g. by saving

DOM-state in advance and restoring it when desired). Instead, it has to take available

transitions in order to transfer between DOM-states. This is done to ensure the RIA is being

explored as it was intended to be explored by a user. Jumping between arbitrary DOM-

states would bypass any server communication that would take place along the way,

1 Related works in the literature commonly refer to DOM-states simply as “states”. In this work, in

order to emphasize the difference between “component-states” which we use in our method and DOM-

states, we refer to them explicitly as DOM-states.

14

possibly breaking the functionality of the RIA. If the desired DOM-state is not reachable

from the current DOM-state using a chain of transitions (called a "transfer sequence"), the

crawler needs to issue a "reset" (reloading URL of the initial page) to go to the initial DOM-

state of the RIA and take a transfer sequence from there. Resets are usually modelled as

special transitions from all DOM-states to the initial DOM-state.

At the beginning, the only known DOM-state is the initial DOM-state and all its events are

unexecuted yet. By executing an unexecuted event, the crawler discovers its destination,

which might be a known DOM-state or a new one. The event execution can then be

modelled as a transition between its source and destination DOM-states.

An FSM � = (�, ��, Σ, �) can also be represented as a directed graph	� = (�, �), where V is

a set of vertices, and E is a set of directed and labelled edges, where (�� , ��; �) is an edge

from vertex	�� to vertex �� with label e. We can define a bijective function �: � → �

between states in the FSM and vertices in the graph. The transitions in the FSM will

correspond to edges in the graph:

�(��, �) = �� ⟺ ��(��), �(��); �� ∈ �

The graph can optionally be a weighted graph to reflect time cost of each transition.

The problem of crawling a RIA is therefore that of exploring an unknown graph. At any

given time, the crawler needs to execute an unexecuted event, or use the known portion of

the graph to traverse to another DOM-state to execute one, until all events in the graph

have been executed, at which point the graph is fully uncovered and the crawling is

15

finished. Resets do not need to be ‘uncovered’ since their behavior is known, but they can

be used as auxiliary edges when using a path to reach from one node to another.

Based on this model, different exploration strategies (such as Depth-First-Search (DFS),

Greedy and Model-Based strategies) have been suggested and evaluated by related works

on sample experimental RIAs. Comparing different exploration strategies is usually done

based on the sum of all events and resets executed during the crawl (possibly considering

the time cost of each of them) until finished, which we refer to as "exploration cost".

 Assumptions

In order to function properly, the state-transition model makes certain assumptions about

the RIA. We list these assumptions here for clarity:

−−−− Server states: As stated before, the crawler has no access to server states. It only

crawls based on observing client states and assumes that server states have no

impact on the determinism of the model. Issuing a ‘reset’ is assumed to always take

the client to its initial state, and executing an event from a client state is assumed to

always lead to the same client state. If there is a change in the server state that is

not directly observable on the client side, this assumption is violated. This can

potentially affect the behaviour of events, and result in non-deterministic behaviour

of those events from the crawler’s point of view.

−−−− Serializing AJAX calls: As explained before, AJAX calls work asynchronously, and

browsers do not prevent users from triggering additional events while other events

are still pending. One simplifying assumption that the state-transition model makes,

16

however, is that events are executed one after another. Once an event is triggered,

the crawler waits for the response of the any AJAX calls made to the server to be

received and processed fully before declaring the new client state as the destination

of the event.

−−−− User inputs: User inputs are also modelled as events. However, the number of

values that can be entered (for example, in a text field), is very high. It is usually

infeasible to try all possible values during the crawl. Instead, we assume that the

crawler is provided with a set of user inputs to be used. The completeness of the

model is then subject to the values provided. The problem of generating a

comprehensive set of user inputs is not specific to RIAs. Any general methods used

for this purpose can be applied in the context of RIA as well. Example research

studies in this field can be found in [22], [23], [24], [25], [26].

 Use in the literature

Several works study crawling RIAs using the state-transition model. In one of the earliest

works, Duda et al. assume the ability to cache and restore DOM-states at will [11]. They use

a Breadth-First-Search (BFS) algorithm to explore a RIA in [11], [27], [28], [29]. However, as

stated beforehand, this assumption limits the crawling capability in the existence of server

states.

Amalfitano et al. also focus on obtaining a state-transition model from a RIA, and using the

model for generating test suits for the RIA. In their initial work [30], they use manual user-

sessions to extract execution traces and build a model. In their follow-up paper [31] they

17

automate their tool by using a DFS exploration strategy. Mesbah et al. [32] introduce their

tool ‘CrawlJax’ for crawling and extracting a model from a RIA. It is able to take a static html

snapshot of each DOM-state and build a non-AJAX version of the website in the end.

CrawlJax also uses DFS algorithm to explore the RIA. By default, CrawlJax assumes all events

in the RIA to be “state-independent” events, and explores each event only from the DOM-

state where the event was first encountered. The event is not explored on the subsequently

discovered DOM-states. This results in a partial coverage the RIA in the existence of state-

dependent events, which is commonly the case. CrawlJax can also be configured to explore

all events in each DOM-state. The authors use CrawlJax in many subsequent papers and

focus on multi-threading [33], security testing on the obtained model [34] [7], etc.

Some research works focus on improving the efficiency of crawling a RIA by focusing on the

exploration strategy used. Peng et al. propose using a greedy algorithm as exploration

strategy in [35] that out-performs DFS and BFS exploration significantly. Our work uses the

same greedy approach for its exploration strategy. The authors of [36], [37], [38] introduce

various model-based crawling strategies to be used as exploration strategy, and sum up the

performance evaluation of all their exploration strategies in [12].

The crawler needs to have a DOM equivalency function to compare the current DOM-state

against the previous ones, and determine if it is equal to any previous DOM-states or not. It

is a common approach consider DOMs with minor differences as the same DOM-state. The

DOM equivalence function varies among different research works. [27] Uses strict equality

to compare DOMs. CrawlJax uses a distance function to compute the edit distance between

different DOMs [39], and considers them as the same DOM-state if the distance is below a

18

certain threshold. The works presented in [40], [37], [38] apply some reduction and

normalization functions presented in [41] on the DOM to exclude the irrelevant data before

comparing DOMs

 The Problem: State Space Explosion

One major challenge in this field is state space explosion. Most RIAs tend to present a very

large number of DOM-states that cannot be crawled in a reasonable time. Usually in RIAs,

numerous events exist in each DOM-state, and each makes a slight change to the DOM. It is

possible for different combinations of these events to result in many different DOM-states

that have no new data, but are merely a new combination of already-seen data. This

phenomenon can cause the model of a complex RIA to grow extremely fast, sometimes

exponentially, in proportion to the number of events in the RIA. Because of this problem, a

RIA with a small set of functionalities can produce a very large state space. As a result, the

crawler will not be able finish the crawl and waste its time on exploring many events in

DOM-states that exhibit no new data. This is the main problem causing the current

methods to fail as effective crawlers on complex RIAs.

Previously mentioned DOM-equivalence methods do not provide a complete solution for

this problem. Various research works that use different DOM-equivalency methods report

inability to cover the content of RIAs comprehensively without falling into state space

explosion. Duda et al point to this exact problem of Cartesian state space explosion caused

by independent parts in [11], using figures and examples, as an unresolved challenge. The

authors of [12], which sums up model-based crawling methods also mention the problem of

19

visiting new DOM-states with no new data. CrawlJax authors point to the problem in one of

their newest papers [13]. The main contribution of this thesis is to introduce a novel

method called “Component-based Crawling” to solve this problem. Component-based

crawling, introduced in chapter 3, aims to cover complete content of a RIA with a model

and exploration cost that can be exponentially smaller than other methods, by identifying

independent parts of a RIA and taking them into account separately. Using Component-

based Crawling, crawlers will be able to explore a new set of RIAs that were previously

deemed too complex for complete coverage.

There are also other techniques used in the literature to improve efficiency. CrawlJax by

default focuses on exploring only new events that appear on a DOM after an event

execution. This approach of limiting the crawler’s attention to only a portion of the state

space helps avoiding irrelevant DOM-states and finishing the crawl with a reasonable

amount of data gathered. However, it does not solve the problem of covering complete

content of a RIA. Moreover, often in complex RIAs a structure such as a widget frame can

appear through many different event execution paths. In such case, the aforementioned

approach explores all occurrences of the structure in the RIA, which can again lead to state

space explosion.

Due to excessive times in crawling large-scale RIAs in these methods, it was suggested that

finishing the crawl might be unreasonable in many cases and the crawler should aim to

cover a reasonable amount of content when crawling is terminated midway [12], [42], [13].

The authors of CrawlJax acknowledge inability to finish crawl in a later paper [13] and focus

on diversifying the crawl to obtain more results in a limited time. We present our own

20

technique for diversifying the crawl in chapter 4. It is implemented and tested on top of the

component-based crawling algorithm in our prototype crawler.

21

3. Component-based Crawling

In this chapter we introduce component-based crawling, our proposed method of crawling

that overcomes some common problems in RIA crawling. Component-based crawling

models the RIA in a different way than the state-transition model introduced in section 2.2,

and achieves a significantly better efficiency.

This chapter is organized as follows: Section 3.1 describes the problem that we are going to

solve, and section 3.2 presents the general overview of our solution. We first describe in

detail the model of the website that the crawler builds, and then move on to describe how

the crawler builds this model and makes use of it during the crawl. Section 3.3 contains

detailed description of the model, and section 3.4 contains detailed discussion of the

algorithm. A discussion of some challenges in our proposed method is provided in

section 3.5. Experimental results and comparisons are presented separately in chapter 4.

 Problem Statement

The main challenge a crawler faces is state space explosion in the RIA model that causes the

crawler to take excessive time to finish the crawl. Most of the time state space explosion is

caused by different mixtures of the same data, leading to new DOMs and producing a large

state space for a small functionality of the RIA. In a typical RIA, it happens very often that a

new DOM-state is encountered that contains no new data and is only a different

combination of already-known data. The usefulness of these combinations depends on the

aim of the crawl. Usually exploring these combinations is not desirable for the crawler.

22

Today’s complex RIA interfaces consist of many interactive parts that act independently,

and the Cartesian product of different content that each part can show easily leads to an

exponential blow-up of the number of DOM-states. A fairly intuitive example is widget-

based RIAs, in which various combinations of contents that each widget can show creates a

large volume of different DOM-states. Not all these DOMs are of interest to the crawler. A

content indexing crawler, for instance, needs to visit every piece of content once and finish

in a timely fashion. These rehash DOM-states only lengthen crawling while providing no

new data. Figure 3 provides an example.

This issue is not just limited to widgets, but is present in any independent part in RIAs down

Figure 3. Example of a new DOM-state with no new data. The DOM in (c) is only a combination of data already

present in (b) and (a), but will have a new DOM-state in the existing methods

23

to every single popup or list item. Typical everyday websites such as Facebook, Gmail and

Yahoo contain tens of independent parts in every snapshot. The situation is similar with any

typical RIA mail client, enterprise portal or CMS. Different combinations of these

independent parts lead the crawlers into crawling a lot of new DOM-states with no new

data. A human user, on the other hand, is not confused by this issue since he views them as

separate entities with independent behaviour, and assumes that the behaviour of one is

not affected by another. In fact, the user would be surprised if the behavior of one of these

parts turns out to be dependent on another.

Based on this observation, unlike the existing solutions, we decide to avoid modelling client

states of RIAs considering the whole DOM of the page. We propose a novel method to

crawl RIAs efficiently by modelling in terms of states of individual subtrees of the DOM that

are deemed independent, which we call ‘components’. Our method detects independent

components of a RIA based on difference between DOMs. By modelling at component level

rather than at the entire DOM level, the crawler will be able to crawl complex RIAs

exponentially faster while still covering all the content. The resulting end-model is smaller

and therefore easier for humans to understand and for machines to analyze, while

providing some more detailed information about the RIA that is absent from DOM level

models.

In the context of detecting independent parts, static widget detection methods such as [43]

have been developed. However, they are designed only to detect widgets, which are a small

subset of independent entities in RIAs. Moreover, unlike our method these methods are

based on a set of predefined rules, and do not adapt to individual RIAs by observing

24

behavior of the RIA. We are not aware of any other research that handles independent

parts of a RIA.

 Solution Overview

Our solution is to model the RIA at a finer level in terms of meaningful subtrees of the DOM

(called ‘components’) instead of modelling in terms of entire DOMs. By building a state-

machine at the component level, we have a finer knowledge of how the RIA behaves, which

helps in addressing the aforementioned problems and letting the crawler crawl more

efficiently. The crawler can use this model regardless of its exploration strategy. Our

prototype implementation uses the greedy algorithm presented in [35] as the exploration

strategy, aggregated with our method to use component-states instead of DOM-states. In

this section we present a brief introduction of the concept of components, how they help,

and how the crawler can discover them.

Let us discuss the concept of components from the point of view of a human user, and then

from the crawler’s point of view, as illustrated in Figure 4. In a typical real-life RIA, each part

of the page interacts with the user independently, and so the user normally thinks of these

parts as separate entities. Examples of components include menu bars, draggable windows

in Twitter, as well as each individual tweet, chat windows in Gmail, the notifications drop-

down and mouse-over balloons in Facebook, etc. The user normally expects to be able to

interact with each component independently from other components on the page.

25

Based on this observation, our aim is to detect these components and have the crawler to

reverse-engineer the RIA by analyzing the behavior of each component independently, thus

avoiding the complexity of analyzing the mixture. This assumption of independency

between components is important in our method for providing full coverage. We expect

this assumption to hold true in almost all real-life RIAs as it follows human user intuition. If,

however, there are components on a particular RIA that affect each other, the crawler

might lose coverage of some content since it does not try out all different combinations of

the components. As current experimental results show, this situation rarely happens when

the components are well defined.

Figure 4. (a) A webpage, (b) components on the page the way a human user sees them as entities of the page,

and (c) the way the crawler sees them as subtrees of the DOM.

26

Since components appear as subtrees in the DOM tree, we partition the DOM into multiple

subtrees that are deemed independent of each other. We assign component-states to each

subtree, instead of assigning a DOM-state to the entire DOM as a whole. Each component

has a set of possible component-states, and a component-state of a particular component

is only compared to other component-states of the same component. In our model, at any

given time, the page that the user sees is not modelled by one DOM-state. Instead, the

page is in a set of component-states, since it consists of different components each of

which has its own component-state. It is worth mentioning that the DOM is partitioned into

components in a collectively exhaustive and mutually exclusive manner, meaning that each

XML-node on the DOM tree belongs to one and only one component.

Successfully modelling a RIA at the component level provides numerous benefits. The most

obvious one is that it can avoid state space explosion caused by rehash DOMs, as depicted

previously in Figure 3; since only newly seen component-states on a DOM contribute to the

state space. Moreover, this fine-grained view of RIA helps the crawler map the effect of

event executions more precisely, resulting in a simpler model of the RIA with fewer states

and transitions. As a result, the crawler can traverse the RIA more efficiently when taking a

transfer sequence, by taking fewer steps. The simpler model of the RIA will also be more

easily understandable by humans and analyzable by machines.

To be able to partition a DOM into well-defined components, the crawler needs to have an

algorithm for detecting components (called ‘component discovery algorithm’). Various

algorithms can be suggested for component discovery. Static DOM analysis methods such

as the widget-detection heuristics can be used. However, they cannot serve this purpose

27

well since the concept of components goes well beyond only widgets or menus, making the

assumptions made in such algorithms too limiting.

In order to devise a method that can be used more broadly, we propose an algorithm that

builds its knowledge during the crawl through learning by observing RIA’s behavior as the

crawler interacts with it. The algorithm is based on DOM changes before and after

execution of each event. In this approach, the crawler starts crawling with no knowledge of

components. Every time an event is executed, the subtree of the DOM that has

appeared/disappeared/changed is considered as a component. Our knowledge of

components increases with every event execution. This method comes from the

observation that if part of the webpage reacts while other parts remain still, the reacting

part is probably a distinct entity by itself. For example, in a RIA webmail interface, clicking

on the title of an email opens up the body of the email while other portions of the UI such

as menus and chat boxes remain intact. This makes the algorithm consider the subtree of

the DOM that is the container of the email body as a component, and not to mix its states

with other portions of the UI thereafter. We are not aware of any other diff-based

approaches for discovering independent parts.

The remainder of this chapter describes the RIA component-based model and the crawling

algorithm in detail.

 Model Elaboration

In this section we present the way the RIA is modelled as a multi-state-machine and how

the crawler keeps track of components in its data structure, followed by a discussion on

28

how independency of components is captured in our model in section 3.3.1. Then in

section 3.3.2 we proceed with detailed description of component identifiers.

The usual way of modelling a RIA is to represent it with the state-transition model described

previously in section 2.2. In the state-transition model, each DOM in the RIA is represented

as a state and each event is represented as a transition. In contrast, in our model we

partition each DOM into components, each of which has its own component-state.

Therefore, in our model a DOM corresponds to a set of component-states..

Since events are attached to XML nodes, each event resides in one of the component-states

present in the DOM (its ‘owner component-state’)2. An event is represented as a transition

that starts from its owner component-state. Since the execution of the event can affect

multiple components, the corresponding transition can end in multiple component-states.

Therefore, our model is a multi-state-machine. Figure 5 illustrates how an event execution

is modelled in the other methods (a) versus our method (b). The destination component-

states of a transition correspond to component-states that were not present in the DOM,

and appeared as a result of the execution of the event.

2 For events that are not attached to an XML-node on the DOM such as timer events, a special global always-

present component is defined as their owner component.

29

The multi-state-machine can be represented as a tuple � = (�, �,Σ, �) where A is the set

of component-states, � is the set of initial component-states (those that are present in the

DOM when the URL is loaded), Σ is the set of events, and � is a function � ×Σ → 2 that

defines the set of valid transitions. Similar to the state-transition model (introduced in

section 2.2), � is a partial function, since not all events are available on all component-

states. Unlike the state-transition model, we have a set of initial states, and executing an

event can lead to any number of component-states.

We can represent the multi-state-machine M as a graph	� = (�, �). Every state !� in M is

represented by a vertex �� in G. We can define a bijection �: � → � between component-

states in the multi-state-machine and vertices in the graph.	And we model each of the

multi-transitions as multiple edges with the same label:

�(!�, �) = # ⟺ ∀!� ∈ #,		��(!�), �(!�); �� ∈ �

Where # ⊆ 2 is the set of component-states that the multi-transition �(!�, �) leads to.

Figure 5. An event execution modelled with (a) DOM-states, and (b) component-states.

Rectangles in (b) represent DOM-states and are not used in the actual model

30

The multi-state-machine is resilient to shuffling components around in a DOM, and does

not store information about exact position of the component-states in a DOM. All the multi-

state-machine knows about the position of a component-state is the XPath described in

section 3.3.2. Therefore, while our model is able to break a DOM into component-states

(the procedure described in section 3.3.2), it is not possible to reconstruct an exact DOM

using the multi-state-machine. While the resulting model of a RIA can be used to generate

an execution trace to any content in the RIA, it cannot generate an execution trace to lead

to an exact DOM.

The crawler keeps information on each component-state of each component in a data

structure. A simplified version of the data structure (called ‘stateDictionary’) is depicted in

Figure 6. It is noteworthy that the definition of a component is not bound to a specific

DOM. The same component can appear as subtree in different DOMs. Components are

defined based on their location. Therefore, what makes two subtrees in different DOMs to

be considered as the same component is their location (not their content). In order to

represent the location of a component, we use XPath with some degree of freedom (more

on this in section 3.3.2). Different content can appear at that location at different times.

They are regarded as various component-states of that component, and are uniquely

identified with IDs, as depicted in Figure 6.

31

In general, the RIA consists of a set of components, and each component has a set of

possible component-states. On any given DOM, some components are present in the DOM

(each in a given component-state) and some components might be absent. Using the

‘Component Location’ column, the crawler can look for the components present in the

DOM, then it can look into any component’s contents and compute an ID to match with the

‘Component-State ID’ column in order to look up additional info on that component-state

(transitions, unexecuted events, etc.), or discover that it is a new component-state. This

procedure will be elaborated in section 3.3.2 once using component locations is discussed

in detail. As for the component-state ID, we use the hash of the contents of the subtree, but

depending on the crawler’s needs any state identifiers introduced in the related works can

be used.

Figure 6. The StateDictionary

32

 Constraints on Component Definitions

So far we have mentioned that components should be defined in a way that they act

‘independent’. Now we can define this constraint more precisely. By ‘independent’ we

mean “the outcome of execution of an event only depends on the component-state of its

owner component”. This means that the behaviour of the events in a component are

independent of other present components in the DOM and their individual component-

states. As an example, the border around a widget that has minimize/close buttons is

independent of the widget itself, since it minimizes or closes regardless of the widget that it

is displaying. Therefore, the widget border and the widget itself can be considered separate

independent components. On the other hand, the next/previous buttons around a picture

frame are dependent on that picture frame, since their outcome depends on the picture

currently being shown. So the next/previous buttons should be put in the same component

as the picture frame. Note that event execution’s outcome can affect any number of

components and this does not violate the constraint of independency3. The logic behind

this definition of independency is that by examining an event only in the context of its

owner component, the crawler learns the event’s execution outcome, and does not need to

examine it regarding other components, which is the key to our state space reduction.

It is the responsibility of the component discovery algorithm to define components in a way

that satisfies this constraint in all of their component-states; otherwise the model will not

3 This is because dependency is about factors that affect the behaviour of an event. As long as the event’s

behaviour only depends on its owner component-state, it can be modelled in a deterministic multi-state-

machine, regardless of what changes it makes to the DOM.

33

represent the RIA correctly and results in loss of coverage of the RIA. The component

discovery algorithm must define components properly in such a way that they are coarse

enough to satisfy our assumption of independency, yet they are fine-grained enough to

reduce the state space effectively.

Failure to define components coarse enough leads to the components not being

independent. In such case, examining an event only in the context of its owner component

is not enough to model the event’s behavior accurately, since the behavior depends on

other component-states as well. This can lead to incomplete coverage of the RIA contents.

On the other hand, failure to define components fine-grained enough leads to state space

explosion. In the worst case, the whole DOM would be considered as one component,

identified with XPath "/", and the set of component-states A would be the same as the set

of DOM-states S. In such case the model essentially becomes equivalent to the DOM-state

model in related works, resulting in the crawler behave as in the related works. Our

proposed component discovery algorithm is described in detail in section 3.4.

 Component Locations

Component locations are identified by the XPath of the subtree’s root element. In order to

find a particular component in the DOM, one should start from the document root and

follow the component’s associated XPath. The element reached is the root of the

component i.e. the component is the subtree under that element. It is notable that an

XPath can potentially map to several nodes, therefore several instances of a component can

be present in a DOM at the same time.

34

Since the XPath serves as an identifier for a component, we need the XPath to be consistent

throughout the RIA i.e. it should be able to point to the intended subtree across different

DOMs of the RIA. However, some attributes commonly used in XPath are too volatile (likely

to change across DOMs) to be consistent throughout the RIA and might fail to be useful in

locating components. Hence, we only use ‘id’ and ‘class’ attributes for each node in the

XPath, and omit other predicates such as the position predicate.

Here is how we build an XPath: to build an XPath for an element e

• Take the path p from the root of the document to e.

• For each HTML element in p, include the tag name of the element, the id attribute if

it has one, and the class attribute if it has one.

Figure 6 provides some examples in the ‘XPath’ column.

There are two noteworthy properties that we would like to point out. First, there can be

multiple instances of a component present in the DOM at the same time, each of which

might or might not be in a different component-state than another. Figure 7 is an example

of a shopping website. Individual list items in the product list are instances of a component

Figure 7. Part of a shopping website’s DOM

35

‘product list item’. XPath also supports several instances of a component in a DOM at the

same time, since querying an XPath can result multiple elements in the DOM. Back to the

example in Figure 7, the product list items have the same XPath

/html/body/div[@id=‘dvContent’]/div[@class=‘ListItem’] (mainly because we are

excluding position predicate in XPath which is their main point of difference). But the

selected item in the list yields a different XPath since it is usually assigned a different class

or id attribute (/html/body/div[@id=‘dvContent’]/div[@class=‘ListItemSelected’]).

Another noteworthy property is that components can be nested (e.g. a widget and its

window frame that has minimize/close buttons can be considered different components),

just as an XPath can point to a subtree under another XPath’s subtree. More examples can

be found in Figure 4 that exhibits these two properties.

Using component locations as guidelines, the crawler can partition the DOM in order to

obtain set of current component-states; as described in the following pseudo-code. This

procedure is used by the greedy strategy for finding our current position in the multi-state-

machine, and also by the pseudo-code in section 3.4 for determining destinations of a

transition.

36

1. Procedure determine_set_of_current_states

2. For each xpath in stateDictionary

3. instances_of_component ← go through the xpath and give the subtree

4. For each _instance in instances_of_component

5. For each known sub-path under the current xpath

6. go through the sub-path and prune the subtrees

7. stateID ← read_contents_and_compute_stateID (instance)

8. Add the stateID to set_of_current_states

9. Return set_of_current_states

Based on our discussion in this section, we can summarize the definition of components

and component-states as follows:

A component is identified by its XPath. We define a function &'!(ℎ such that for each node

n in the DOM tree, &'!(ℎ(*) returns the XPath of n as defined above. If x is the XPath of a

component, any node n such that &'!(ℎ(*) = & is the root of a subtree that holds an

instance of that component. Since traversing an XPath in a DOM tree can lead to multiple

nodes, there can be multiple instances of a component present in a DOM. A “component-

state” is the subtree T under node n, with all other component-states inside T pruned. We

can formalize the definition of a component-state as follows:

We define function ‘subtree’ such that �+,(-��(-) returns the subtree rooted by r, where r

is a node in the DOM tree. Subtrees, just like graphs, have a set of nodes and a set of edges.

We define a pruning operator – on subtrees as:

37

.� /	.0 = .1

Such that .1 is a subtree with the same root as	.�, but with .0 pruned from it. Therefore:

�21 = �2�\�20	, �21 � �2�\�20

Where �24 is the set of nodes of the subtree	.4, and �24 is the set of edges of the

subtree	.4. We can then define pruning a set of subtrees from a subtree:

. / 5.�, .0, ⋯ , .47 � . / .� / .0 /⋯/ .4

We say a node n is inside a subtree T when:

*	8*	. ⟺ * ∈ �2

Suppose X is the set of all XPaths in the stateDictionary (the ‘component-location’ column in

Figure 6). We want to obtain the component-state b such that its root is node r. First we

find all the nodes inside �+,(-���-	 that are roots of other components:

� � 5*|&'!()�*	 ∈ : ∧ *	8*	�+,(-���-	 ∧ * < -7

And then prune their subtrees from subtree of r.

, � �+,(-���-	 / 5�+,(-���*	|* ∈ �7

 Algorithm Elaboration

In order to automatically explore a web application, a crawler needs to have an exploration

strategy that tells it which events to execute, how to analyze the event execution

outcomes, and when to stop. The method proposed in this paper only relates to analyzing

38

event execution outcome, in order to build the model that was described in detail in

section 3.3. So theoretically it can be used by any exploration strategy. The exploration

strategy can then benefit from the model that is being built by our method. As mentioned

earlier, we used the greedy strategy as the exploration strategy in our experimental

implementation.

We now proceed to describe how the crawler populates the stateDictionary during the

crawl (the component discovery algorithm). Generally, using the ‘Component Location’ list

in the stateDictionary, the crawler can discover new component-states during the crawl and

populate the ‘Component-State ID’ lists. Our proposed component discovery algorithm,

populates the ‘Component Location’ list itself incrementally during the crawl as it observes

the behavior of the RIA (as well as the ‘Component-State ID’ lists). If a pre-loaded

‘Component Location’ list is given, the crawler can leverage that as a fixed component

locations list. However, we do not assume such a list exists at the beginning of the crawl,

and the algorithm has the ability to discover Component Locations itself.

The algorithm is based on comparing the DOM tree snapshots before and after each event

execution. Every time an event is executed by the crawler, the subtree of the DOM that has

changed as a result of the event execution is considered a component.

The way we compare the DOM trees to obtain the changed subtree is defined as below:

Suppose the DOM-tree before the event execution is Tbefore and the DOM tree after the

event execution is Tafter. We traverse Tbefore using breadth-first-search (or any other

traversal algorithm). For each node x in Tbefore, we compute the path from root to x, and

39

find the node in Tafter that has the same path. If x and its corresponding node in Tafter are

different, or have different number of children, x is considered as root of a component, its

XPath is added to the stateDictionary if not already existing, and the search is discontinoued

in subtree of x. If several such nodes exist in Tafter, their deepest common ancestor is used

as the root of the component.

From that point on, whenever the crawler encounters a new DOM, it detaches the contents

of the component and considers it as a component-state; One of many component-states

present in the DOM. Initially, the stateDictionary contains only one component with the

XPath of “/”. More components are discovered and added to the stateDictionary as the

crawling proceeds. The algorithm can be summarized as the pseudo-code below:

40

1. Procedure ComponentBasedCrawl

2. For (as long as crawling goes)

3. event ← select next event to be executed based on the exploration strategy

4. execute (event)

5. delta ← diff (dom_before , dom_after)

6. xpath ← get_xpath (delta)

7. If (stateDictionary does not contain xpath)

8. add xpath to stateDictionary

9. resulting_states ← delta.determine_set_of_current_states()

10. For each state in resulting_states

11. If (stateDictionary does not contain state)

12. add state to stateDictionary

13. event.destinations ← resulting_states

14. Return stateDictionary

In the pseudo-code above, in each iteration the crawler executes an event based on its

exploration strategy (in our case, greedy) in lines 2-3. Then in line 4 it finds the changed

subtree of the DOM and stores it in variable delta. Then in lines 5-8 it gets XPath of delta

and adds it to the stateDictionary if not already there. This is to discover new component

definitions during the crawl (Here we are updating the ‘Component Location’ column). Then

in line 9 it runs the determine_set_of_current_states procedure that we introduced in

section 3.3.2 on the delta. The procedure returns a set of component-states, which are

added to the list of their corresponding component’s states in stateDictionary, if not

already there (lines 10-12). This is to populate information in stateDictionary on what

41

component-states can each component have (Here we are updating the ‘Component-State

ID’ column). Finally, in line 13 the set of resulting component-states is associated with the

last executed event. This means that when modelling the RIA as a multi-state-machine, we

model this event execution as a transition that ends in the resulting component-states (see

Figure 5). The crawler then proceeds to pick another event based on its exploration strategy

and execute it.

 Violations

Our method makes the assumption that components are independent, and we discover

new components based on diff between DOMs. Note that this component discovery

algorithm has no direct correspondence to the assumption that components must be

independent. Therefore there is no guarantee that the components defined by this

algorithm indeed satisfy the assumption of independence. As a result, this assumption

might be violated, in which case the behaviour of an event in a component may not be

totally independent from other components in the DOM. Whenever the outcome of an

event execution does not adhere to our deterministic model of the RIA, we say that the

crawler has encountered a “violation”.

Occurrence of violations may or may not negatively affect the coverage. It can be the case

that some components are wrongly assumed independent, and thus a certain combination

of their events that could lead to new content is never explored. In this case, the crawler as

missed some content.

42

Ideally, dependent components should be detected and merged. Merging two components

into one causes the crawling method to explore all component-states of the new

component (which consists of all combinations of component-states of the merged

components), therefore reaching the missed content. However, this idea requires a way to

detect dependent components. One solution would be that whenever the crawler

encounters a violation, it should merge the component with another component based on

heuristics. The heuristics guess which components might have been dependent that caused

the violation.

However, dependent components are not the only source of violations. Violations can also

occur if any of the general assumptions in section 2.2.1 do not hold. In such cases, merging

components in the abovementioned method will not fix the problem, and violations

continue to happen after merge. As a result, the method wrongly keeps merging

components as it encounters violations, until all components are merged into one, in which

case component-based crawling reverts to normal DOM-based crawling. Therefore, not

only the abovementioned solution may not help in some cases, but also it may defeat the

purpose of component-based crawling.

We acknowledge that this issue requires further investigation. Detecting and merging

dependent components are costly operations and impose high overhead on the crawler. In

our current implementation, occurrences of violations are simply ignored. This

implementation has achieved full coverage on all of our experimental test cases, and in

none of them we encountered a situation where violations cause loss of coverage. In a

future work, we may address the problem of encountering violations.

43

 Conclusion

In this chapter we described the method of component-based crawling in detail. Using a

multi-state-machine, it is possible to model a RIA as a set of components with individual

component-states, rather than DOM-states. Modelling a RIA with components captures

interactions of events at a finer level, and prevents the crawler from exploring unnecessary

combinations. We proposed an algorithms for efficient crawling of RIAs based on this

model, starting with no knowledge of components in a RIA, discovering components during

the crawl and applying the knowledge as more components are discovered.

44

4. Experimental Results

In this section, we compare the performance of our component-based crawling method to

other methods known to be the most efficient algorithms for DOM-based crawling of RIAs

with complete coverage.

The following sections are organized as follows: In section 4.1 we describe in detail what

experiments are conducted, what methods are compared and on what basis they are

compared, and how the results are produced and verified. In section 4.2 we present the

subject RIAs that are used as test cases in the experiments. Then in section 4.3 we provide

the experimental results on comparing the performance of the methods on all our test

cases. In addition, on some of the test cases we are able to increase and decrease the size

of the RIA by controlling the items shown. On these test cases, we perform experiments in

section 4.4 to compare how different methods scale as the size of the RIA enlarges. Finally,

we summarize our findings from the experimental results in section 4.5.

 Experimental Setup

 Candidate Methods

Based on previous studies on the performance of AJAX crawling algorithms [35], [12], the

greedy exploration [35] method and the model-based crawling methods consistently

outperform standard DFS and BFS methods. Experimental studies performed in [12] and

[42] show that model-based strategies tend to show a better performance than the greedy

exploration strategy, and that the probability strategy [42] tends to be the most efficient

45

model-based crawling strategy. Therefore, we compare the performance of our

component-based method against greedy exploration and probability model as two of the

most efficient DOM-based crawling algorithms with complete coverage. As suggested by

[42], the probability strategy is configured with initial probability set to 0.75.

As hinted in section 3.4, our implementation of component-based crawling uses the greedy

algorithm as its exploration strategy. Therefore, comparing the experimental results of our

component-based greedy method and the standard DOM-based greedy method enables

the reader to observe the direct impact of component-based crawling on performance,

without any change in the exploration strategy.

 Variables to Measure

We compare the performance of the candidate methods form various different aspects.

These aspects are discussed in this section:

Cost of Finishing Crawl

The first and most obvious performance determinant is the cost of finishing the crawl. We

compare the time and exploration cost that each method takes for performing the full

crawling procedure. (The cost metrics are elaborated in the next section). The less amount

of time/cost it takes a method to finish crawling, the more usable it is; considering the fact

that all methods provide the same content coverage (see section 4.1.5).

Model Size

As explained in [14], [13], the size of the generated model has a great impact on usability of

the crawling results. A larger model increases the cost of analyzing or testing the model,

46

and is harder to maintain. Therefore, the smaller the model, the more usable and

maintainable it is. For this reason, we also use the size of the model generated by the

crawler as another performance representative for comparing different methods.

Authors of [13] use the number of transitions in the model as an indicator of its size. We

provide both the number of states and the number of transitions in our results, and use the

number of transitions as the indicator for size.

 Cost Metrics

To ensure credibility, the different crawling methods are compared using 2 different cost

metrics. These metrics are explained below:

1- Exploration Cost: Firstly, we use exploration cost (weighted sum of events and

resets executed, introduced in section 2.2) as a performance metric. In order to

calculate the exploration cost, for each of the test cases we have measured the

average event execution time (��	=>? and average time to perform a reset (�-	=>?.

For each RIA, (��	=>? is calculated by executing randomly selected events, and

(�-	=>? is calculated by loading the RIAs URL multiple times, and measuring the

average times for each respectively. Then, the “reset weight” is then defined as

@A �
(�-	=>?

(��	=>?

. Then, with the simplifying assumption that all events have a weight of 1, we

calculate the exploration cost as

*B C *A � @A

47

where *B is the number of events executed and *A is the number of resets

performed.

2- Time: Exploration cost provides a better metric than simply measuring the time that

it takes to perform crawling, since time measurement is affected by factors external

to the crawling method. Examples of these factors are communication delays and

external tasks run by the OS. However, in order to ensure that the processing

overhead of component-based crawling does not affect its efficiency negatively; we

also compare the methods based on time measurements.

 Implementation

All the presented algorithms are implemented in a prototype of IBM® Security AppScan®

Enterprise (ASE) [17], which is the same platform used in [37], [12], [38]. ASE uses web

Figure 8. Architecture of our crawler (as appeared in [42], with slight modifications)

48

crawling for the purpose of vulnerability detection and security testing on web applications.

Current versions of ASE do not rely on external web browsers for providing the client side

environment of the application, and instead use an embedded implementation of a

browser. The embedded browser is capable of navigating to webpages, identifying

elements with registered events. Our implementations of RIA crawling algorithms make use

of ASE’s JavaScript engine and event identification mechanism in order to execute.

For detecting equivalent DOMs in the DOM-based methods, ASE’s default DOM equivalency

function (outlined in [41]) is used. For detecting equivalent states in component-based

crawling, the same function is used, applied to component-states instead of DOMs.

All subjects RIAs are deployed on a local server for the purpose of experiments. Targeting

RIAs online on public domains is not suitable for running experiments, since crawlers should

practice politeness [44] which is not to overwhelm the server with too many requests that

may disrupt the normal operation of the server to serve its users. Otherwise their requests

may be identified as a Denial of Service (DoS) attack and be dropped. Moreover, publicly

available RIAs may change over time and this prevents the reproducibility of the

experiments.

 Coverage Verification

On all test cases, content coverage of the component-based crawling method is compared

against the other methods and verified for equality. In order to do so, a database is

associated with each crawling session. During the crawling session, after each event

execution the crawler adds every line of the HTML representation of the DOM to the

49

database. The database for each session therefore holds the content covered in that

session. When we crawl a RIA with different methods, the databases are checked for

equality to ensure none of the methods missed any content that the others covered. All

methods are verified to have had equal coverage in all our experiments. This ensures that

on our test cases, although component-based crawling does not visit all of the possible

DOM-states, it covers all the content in the RIA. It only misses DOMs that contain no new

data that the crawler had not seen already.

 Test Cases

In this section we introduce the RIAs that we use as test cases in our experimental studies.

Two of the websites are created and maintained by our own research group as basic test

cases. The rest of examples are instances of real world RIAs deployed on our local sever for

the purpose of the experiments.

Since some of these test cases are too complex for complete DOM-based crawling, previous

studies that use these test cases [37], [12], [42] use a modified version of some of them.

These studies exclude some of the data in the original RIA in order to reduce the state space

of the RIA. Limited versions of these RIAs were used since crawling the RIA with the original

set of data was impossible due to state space explosion. Component-based crawling,

however, is able to crawl the full version of the RIAs. On each of the test cases, we explain

the modifications performed, if any. While we use the limited version of the websites in

section 4.3 to make comparison with DOM-based methods possible, we also run

50

component-based crawling on the full version of the RIAs as part of the scalability

experiments in section 4.4.

51

TestRIA

TestRIA, shown in Figure 9, is an example RIA maintained by our research group. It mimics a

fully Ajax-based single URL E-commerce website with a three-column layout and a top

menu. Users can select different menu items on the home page and the page contents

fetched via Ajax interactively. Users can navigate with additional menus that appear on the

left column, navigate through item catalogs, or see more details about them. Some sections

include next/previous style navigation functionality.

Figure 9. TestRIA

52

Altoro Mutual

Altoro Mutual is a demo website for a fictional bank, originally maintained by the by the

IBM® AppScan® team as a mock website for security testing. The original website [45] is a

traditional web application featuring hyperlinks for navigation. We have created an

Ajaxified version of the website that uses AJAX calls instead of hyperlinks to fetch content.

The website has no complex functionality and provides content via menu items that use

AJAX.

Figure 10. A screenshot of Altoro Mutual

53

ClipMarks

CilpMarks [46] is a good example of social bookmarking websites. This AJAX-based RIA is for

sharing parts of any webpage one likes with other users. The main page lists shared items in

a list on the left side. Clicking on each item loads the content into the right hand side pane.

The right hand side pane also provides functionality for sharing, voting up, following, etc.

Each item on the left side list also has a ‘pops’ button, clicking on which displays a list of

users voted for that item in a popup dialog.

The instance of the RIA used in the experiments contains 3 items (clips) since including

more clips required excessive amount of time for experimenting with DOM-based methods.

Experiment with different number of items is also conducted in section 4.4.

Figure 11. ClipMarks

54

Periodic Table

This RIA provides a good example of a large and dense graph. The RIA [47] exhibits the

periodic table that contains all the chemical elements in a table. Clicking on a chemical

element displays detailed information about the chemical element in a window, while other

chemical elements are still accessible. There is also an anchor at the top of each page

(Toggle Details) which switches the style of the current page between two alternative

styles.

Figure 12. Periodic Table RIA

55

ElFinder

ElFinder [48] is an open source AJAX-based RIA for file browsing via a web Interface. The

user can browse the folders by using the tree view on the left pane, selecting or double

clicking files and folders on in the icon view area, and using the ‘home’ and ‘up’ buttons on

the toolbar.

Figure 13. A snapshot of our simplified version of elFinder

In our experiments, we use a simplified version of the RIA, with some of the original

functionalities that made changes to the server state of the RIA (such as rename and edit)

disabled. The toolbar on the top has ‘refresh’, ‘home’, ‘up’, ‘view’, and ‘help’ buttons. The

‘view’ button toggles between icon view and details view in the main browsing area. The

help button renders a floating help window with 3 tabs. In our experiments, we point the

56

browser to a directory structure with 4 folders, 2 of which have a file inside and the other 2

have 3 files inside.

Bebop

Bebop is an open source AJAX-based interface to browse a list of publication references.

The top portion of the application contains a set of events that filters the displayed

references according to different categories, and at the bottom the references are listed.

Each of the listed references can be in toggled between 3 different states on how much

information is displayed.

Figure 14. Bebop

57

Bebop is a good example of a RIA that can show a very large number of different DOMs

with a very limited set of data, causing state space explosion. The original version of the RIA

has 28 reference items. In our experiments, however, we use instances of Bebop with only

3 reference items loaded, to make experiments practically possible. Experiments with

different number of items (including the original 28) is also conducted in section 4.4.

 Comparison on subject RIAs

In this section we present the experimental results on the efficiency in covering complete

content of our test cases. We compare the cost that it takes for the crawler to finish

crawling of the RIA, measured in both exploration cost and time. Then in section 4.3.3 we

compare the resulting models based on size.

 Exploration Cost

Figure 15 plots the total crawling cost incurred by each of the candidate methods on each

test case.

58

Figure 15. Comparison of exploration costs of finishing crawl for different methods

And the details are presented in the following table:

 TestRIA
Altoro

Mutual
ClipMarks

Periodic

Table
elFinder Bebop

Reset Weight 2 2 18 8 10 2

Greedy 1,003 2,576 12,398 31,814 30,833 72,290

Probability 974 2,520 12,562 31,456 32,014 71,041

Component-

Based
142 308 443 3,856 2,733 293

Table1. Exploration costs of finishing crawl for different methods

As seen in the figure and the table, the component-based crawling method consistently

outperforms probability method and the greedy method by far. The difference between

greedy and probability methods is negligible compared the difference of component-based

crawling with them. As we move from simpler test cases (TestRIA and Altoro Mutual) to

bigger test cases such as Periodic Table, the difference also becomes even larger.

0

10000

20000

30000

40000

50000

60000

70000

80000

TestRIA Altoro Mutual ClipMarks Periodic Table Elfinder Bebop

E
xp

lo
ra

ti
o

n
 C

o
st

Greedy Probability Component-Based

59

The difference is more dramatic in RIAs that have a complex behaviour. The best example

among our test cases is Bebop, which contains very few data items shown on the page, but

can sort and filter and expand/collapse those items in different manners. Even in an

instance of the RIA with only 3 items, component-based crawling is 200 times more

efficient than the other methods. This difference in performance quickly gets even bigger in

an instance of the RIA with more items (This is studied further in the scalability tests

section). Results on a Bebop instance with more items would not visually fit in the chart,

therefore we used an instance with only 3 items in this section.

While component-based crawling still outperforms other methods in crawling elFinder, the

performance gain is not as much as the other complex RIAs. The reason is that elFinder is

file browser in which the status of the main icon view effects the behaviour of various parts

of the UI such as the status bar and the toolbar. Therefore, almost the whole RIA is

considered as a component by our method, and only few functionalities of the RIA are

considered separate independent components.

 Time

Since component-based crawling requires a fair amount of computation at each step, we

also measured time in similar experiments to ensure this processing overhead does not

degrade the overall performance.

60

Overall Crawling Time

Figure 16. Comparison of time of finishing crawl for different methods

RIA Altoro ClipMarks

Periodic

Table
elFinder Bebop

Greedy 0:00:18 0:00:34 0:03:38 1:13:08 0:51:22 1:25:11

Probability 0:00:11 0:00:20 0:02:50 1:09:42 0:49:00 1:17:32

Component-Based 0:00:06 0:00:04 0:00:13 0:01:21 0:08:21 0:00:29

Table 2. Time of finishing crawl for different methods

As can be seen in the above figures and tables, the performance gain of the component-

based crawling method compared to the other methods measured by time is similar to

when measured by exploration cost. These results verify the fact that component-based

crawling incurs negligible computation overhead.

The most computationally expensive operation in our crawler implementation is the

function to calculate state-ids [41], which incurs reducing and normalizing the DOM and

computing hash. DOM-based crawling methods invoke this function on the entire DOM

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

RIA Altoro clipmarks ptable elfinder bebop

T
im

e

Greedy Probability Component-Based

61

once in each step to calculate the state-id, whereas component-based crawling invokes this

function many times (once for each present component-state) per step. However, since

these invocations do not engage with the entire DOM and only work with small pieces of

the DOM, they are performed much faster, hence making component-based crawling’s

several short invocations comparable to other methods’ one lengthy invocation.

 Model Size

In this section we compare the size of the models resulting from component-based crawling

and DOM-based crawling methods. The resulting model does not depend on the

exploration strategy used. Therefore, different exploration strategies compared in previous

section produce the same model from a RIA when crawling is finished completely. However,

when using component-based crawling we produce a different model from the same RIA

since it is now modelled at component level rather than DOM level. We previously provided

detailed description of the model in section 3.3. It is worth noting that although the models

differ, they cover the same functionality and content from the website.

62

The following tables provide the number of states and number of transitions in the models

obtained by DOM-based crawling and component-based crawling on each of the test cases.

TestRIA Altoro Mutual

States Transitions

States Transitions

Dom-Based 39 305 Dom-Based 45 1,210

Component-

Based
67 191

Component-

Based
87 536

Periodic Table ClipMarks

States Transitions

States Transitions

Dom-Based 240 29,034 Dom-Based 129 10,580

Component-

Based
365 2,019

Component-

Based
31 377

 elFinder Bebop (3 items)

 States Transitions States Transitions

Dom-Based 640 16,368 Dom-Based 285 29,284

Component-

Based
 152 3,239

Component-

Based
119 774

Bebop (5 items)

States Transitions

 Dom-Based 1,800 145,811

Component-

Based
141 1,134

Table 3. Size of the obtained models using DOM-based crawling and Component-based crawling

As suggested in [13], we take the number of transitions as a metric for size of the model,

since fewer number of transitions means fewer number of execution traces to be tested,

which reduces the cost of testing (or any other analysis on) the model.

63

The results show that although modelling at component level can result in more states in

some cases, it consistently provides substantially fewer transitions in all test cases4. Like in

the previous sections, the difference becomes more significant as we move to larger test

cases.

The models are verified manually for correctness with the help of a Model Visualizer tool

developed in our team. The Model Visualizer can display the model, show information

about any transition or state that is selected in the UI, and playback a desired event

execution trace in a browser window for easy verification.

Below we present visual comparison of the model generated by each method on three of

the test cases as an example. Visual comparison of more complex test cases are not

included as they present large-scale or dense graphs that are not clearly understandable

when printed.

4 Notice that for component-based crawling, in some cases the number of transitions in the model in Table 3 is

actually more than the number of events executed by the crawler (Table1). This is due to the fact that in

component-based crawling, unlike DOM-based crawling, an event execution may be modelled with several

transitions, each pertaining to one of the destination component-states that emerge as a result of the event’s

execution.

64

Figure 18. The TestRIA website modelled at DOM level (left) and component level (right). As seen in the

figures, comopnent-based crawling results in more number of states, but a cleaner model with fewer

transitions. For example, menu items are modelled as transitions from every state in the DOM level model,

while they reside in their own component in the component-level model.

Figure 17. The Altoro Mutual website modelled at DOM level (left) and component level (right)

65

 Scalability Tests

In some of our test cases, we are able to control the size of the RIA by changing the number

of data items in the source code of the RIA. In order to test the scalability of the

component-based versus DOM-based methods, we conducted additional experiments on

these test cases. In this section, we observe the scalability of the crawling methods by

experimenting with different instances of the same RIA with different sizes.

For visual clarity of the charts, we only include the results for the greedy method and our

component-based method in the charts. The results for the probability method are omitted

in these charts since they would be visually indistinguishable from the results of the greedy

method, as these two methods showcase near identical scaling behaviour. In the tables in

this section, “N/A” refers to “not available”, were obtaining result for DOM-based crawling

was impractical due to excessive running times.

Figure 19. The ClipMarks website modelled at DOM level (left) and at component level (right). As we move to

more complex test cases, the component level model looks more differently from the DOM level model. This

instance of ClipMarks has 3 items. As seen in the figure, this resulted in 3 identical branches In the DOM level

model.

66

ClipMarks

In ClipMarks, the initial page of the RIA shows a list of items that users have shared.

Therefore by tempering the number of items in our local copy of the RIA, we can observe

how a crawling algorithm scales as we add list items incrementally. Figure 20 shows the

time cost of crawling different versions of the website using DOM-based and component-

based greedy crawling, from 1 item to the original 40 items.

Figure 20. Time of crawling ClipMarks as the number of items in the website increase

The numbers are given below in Table4.

1 2 3 4 5 10 15 20 25 30 40

Component-Based 0:00:06 0:00:11 0:00:16 0:00:21 0:00:26 0:00:53 0:01:39 0:02:58 0:04:40 0:06:17 0:09:07

Greedy 0:00:13 0:00:54 0:03:32 0:31:28 2:37:02 N/A N/A N/A N/A N/A N/A

Probability 0:00:11 0:00:47 0:02:50 0:25:30 2:52:56 N/A N/A N/A N/A N/A N/A

Table4. Time of crawling ClipMarks RIA with various numbers of items

As the results show, we can verify that component-based crawling scales nearly linearly

where the DOM-based greedy method grows exponentially. This phenomenon is clearly

visible in the figure. With only 5 items enabled, the running time for DOM-based methods

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

0 5 10 15 20 25 30 35 40 45

T
im

e

of Items

Component-Based Greedy

67

reaches higher than 2 hours and a half, making further experiments practically infeasible.

Component-based crawling, however, finishes crawling of the full version of the RIA with all

40 items enabled in less than 10 minutes.

Bebop

In Bebop also we can change the number of publications that the RIA presents. Results on

crawling with different number of publications (including the original version with 28

publications) are shown in the figure below:

And here are the numbers:

1 2 3 4 5 10 20 28

Component-Based 0:00:19 0:00:23 0:00:25 0:00:29 0:00:31 0:02:50 0:06:21 0:11:54

Greedy 0:01:59 0:06:30 0:25:04 1:25:11 N/A N/A N/A N/A

Table 5.Time of crawling Bebop RIA with various numbers of items

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

0 5 10 15 20 25 30

T
im

e

of Items

Component-Based Greedy

Figure 21. Time of crawling Bebop RIA as the number of items increases

68

As with the previous example, in this example also we see that component-based crawling

becomes more and more advantageous as the number of items in the RIA increases and the

number of DOM-states grows exponentially. Once again, the complete RIA is only crawlable

using component-based crawling.

ElFinder

We can perform a similar experiment on elFinder by changing the number of files and

folders that exist in the directory structure that elFinder browses. In this set of experiments,

we load that directory with a set of folders (no files in the directory root). In each folder

(depth 1) there are files. One out of each 3 folders has 3 files inside, the rest of the folders

have one file inside. In Figure 22, the x axis shows the total number of files (excluding

folders) that exist under the directory.

Figure 22. Time of crawling elFinder as the number of files in the RIA browser increases

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

3:21:36

0 20 40 60 80 100

T
im

e

of files
Component-Based Greedy

69

The numbers are presented in the following table:

 2 4 8 16 40 100

Component-Based 0:01:11 0:02:57 0:04:21 0:08:18 0:18:52 0:59:51

Greedy 0:07:14 0:15:30 0:43:20 3:08:00 N/A N/A

Table 6. Time of crawling elFinder RIA with various numbers of files to browse

As mentioned earlier, our algorithm considers most part of the elFinder as one component.

As we can see in the results, component-based crawling still scales better than DOM-based

greedy, although to a lesser extent compared to the previous 2 test cases.

 Summary

In summary, component-based crawling shows a significantly better efficiency than DOM-

based crawling methods, consistently among all the test cases. In fact, larger test cases

better exhibit the performance advantage of component-based crawling. Scalability

experiments show an almost-linear scalability for component-based crawling where DOM-

based crawling becomes exponentially inefficient. Results based on running time are in line

with the results based on exploration complexity, which confirms that the processing

overhead of our component-based crawling algorithm is negligible.

The complexity of the model derived from the RIA is also significantly lower with

component-based crawling, while covering the same functionality and content. This results

in better analyzability and maintainability of the generated model compared to other

methods.

70

5. Similarity Detection

The data form the crawler is usually fed to a ‘consuming system’ that analyses the data (e.g.

runs security test) and produces end-results. But not all data might have equal value to the

consuming system for producing end-results. In RIAs where a large amount of data is

present, the crawler may spend valuable time exploring in a pool of unimportant data,

while there is valuable data to be discovered elsewhere in the RIA. Therefore, there is a

challenge for an automatic crawler to direct the crawl towards finding the more valuable

data earlier during the crawl.

In order to address this problem, we aim to detect ‘similar events’ (events that tend to

produce similar data that do not contribute as much to the end-results), and give them less

priority. In this chapter, we first explain the problem in detail and then present our

similarity detection solution. Finally, we provide a section for the experimental results to

evaluate the effectiveness of the solution.

 Problem Statement

Complex websites present a challenge to automatic crawlers in finding useful results in a

timely fashion. Consider websites such as shopping, news, or social websites. These

websites contain an enormous amount of data organized in database. They can present

very large volume of content through structurally similar UI. Crawling such large RIAs can

take a very long time, even with techniques such as component-based crawling. In such

71

cases, we can usually see a pattern of having large arrays of similar content, and it is in the

interest of the crawler to limit time spent on each of them, and ‘diversify’ the crawl.

For example, Facebook is a large RIA, in which a typical page contains numerous posts, and

each post has a ‘like’ button, names of people, etc. Clicking on the ‘likes’ link of each post in

Facebook brings up a popup window with a list of people who liked the post, and hovering

the mouse over each person shows a popup balloon with some details about the profile.

Going through all like lists and all profile popups is a very time consuming task that may not

be useful to the crawler. A crawler that does structure analysis or security scan, for

example, is more interested in the structural aspects of the RIA rather than the text

content. Therefore visiting one instance of a likes list or a popup balloon is enough and the

crawler needs to direct the crawl towards discovering other structures in the RIA. Going

Figure 23. Examples of some similar events on Facebook.com

72

through every item in the list only leads to redundant information in this case (if a security

hole exists in a profile popup, it probably exists in all profile popups. Instead of reporting

instances of the same problem repeatedly, it is better to find other problems in the

application first). Other common examples include online stores, news, blogs, and emails to

name a few. These websites typically contain thousands of items, each of which displays

information on a single product, a single blog, a single news entry, etc.

In such environments, the crawler should be able to find the most diverse set of data as

early as possible during the crawl, and leave the rest of uninteresting ‘similar’ data for later.

This can prove helpful for various reasons.

Firstly, it might be unreasonable to assume that the results of crawling are only consumed

after the crawl has finished. Crawlers such as security scanners usually pipeline the output

to the consuming system as the crawling proceeds, to report the errors on-the-fly.

Therefore, finding a broader set of results earlier can be useful for the user. Also, security

scanners may aim for finding structure over content, and test for security only structurally

different states. Therefore, having similarity will prevent them from clicking on all the ‘likes’

on Facebook.

Secondly, the user might even cap the crawling time, so the crawl might not proceed to the

end. In the case of a content indexing crawler, for example, when the user stops the scan or

views the results midway due to excessive crawling time, he/she would expect the set of

results to be incomplete, but still representative of different aspects of the RIA. Diversifying

the crawl in this case helps obtaining a broader birds-eye view of the RIA earlier, much like

73

a human-guided crawl would do, rather than getting stuck in a corner of the RIA. (Without

diversification we might get details on every single entry in the help menu and nothing from

the rest of the RIA).

Therefore, the order in which crawler discovers content matters, and diversifying the crawl

can prove helpful during a long-running crawling task. Diversifying the crawl can be

achieved through detecting similar content, and directing the crawler around them.

We propose to obtain this feature in RIA crawlers by detecting events that perform similar

tasks. We call these events “similar events”. By detecting similar events prior to executing

them, a web crawler can decide to skip over them or postpone their execution. Comparing

events or predicting their outcome, however, is not a trivial task. Unlike URLs, the

destination of an event cannot be known unless executed. The arguments of a JavaScript

function call are not the only information passed to the function, and two events with the

same function call can yield different results. Therefore, we use heuristics to observe and

anticipate the behaviour of events for the purpose of diversifying the crawl.

Note that Similarity Detection is independent from the other concepts in this thesis, and

can be used with either component-based or DOM-based crawling. Our proposed

technique is also independent from the exploration strategy used (It only filters out similar

events). In the next two sections we present our method to detect and deal with similarity.

74

 Solution Overview

Upon visiting a page, events on that page are grouped into “similarity classes”. If an event

does not fit in any of the existing classes, a new similarity class is introduced for that event.

Some events discovered later in the crawl might join the class as well. Deciding the

similarity class of an event must not require execution of that event. Therefore, similarity

class of an event is decided using only factors that can be observed statically from the DOM.

Our heuristic method classifies events based on their code and their surrounding context in

the DOM. It will be described in section 5.3. Note that the concept of a similarity class is not

related to the concept of components or DOMs, and is not restricted to either. A similarity

class can span different states of the RIA, so two events from different DOMs/components

can be in the same similarity class.

After events on a DOM are categorized into similarity classes, the crawler proceeds to

execute a few events from each class. This “trial” is done to ensure that events in the same

class indeed yield similar outcomes, and avoid any faulty categorization by the heuristic. A

good example of such a case would be menu items on many RIAs that are implemented

using similar or even identical function calls. Since their code and also their surrounding

context is similar, the heuristic might put them in the same similarity class. Executing two of

them, however, reveals that they point to significantly different portions of the RIA.

Every class of events has a label of ‘similar’, ‘dissimilar’, or ‘unknown’. All classes are

labelled ‘unknown’ upon creation. While performing the trials, a class is labelled as

‘dissimilar’ if at least two events inside that class have dissimilar behaviour. A class is

75

labelled ‘similar’ if its events show similar behaviour after certain number of trials. The

number of trials performed for each class (i.e. number of events executed for each class

prior to labelling it ‘similar’) is an adjustable parameter. We use the minimum number ‘2’ in

our experiments as the number of adequate trials. Trials are only needed for ‘unknown’

classes and need not to continue on a class it is labelled ‘similar’ or ‘dissimilar’.

It is worth noting that performing the trials can be postponed in order to not interfere with

the normal exploration of the site. In fact, the crawler proceeds to execute events normally

based on its exploration strategy. The event classification mechanism then observes the

outcome of each event as they are executed, and adds the knowledge to its trial knowledge

base. Therefore, classifying events, performing trials and labelling the classes are all

transparent from the exploration strategy and have no impact on the exploration cost.

We formalize similarity classes as follows:

In this chapter, when we refer to an event e, it refers to an instance of the event in a

particular context. Therefore, the set of event instances is different from Σ. We refer to the

set of event instances as Σ′. For simplicity of notations in this chapter, we refer to the event

instance simply as ‘event’, and refer to the context of the event as E��	.

Function f is a heuristic function that, given an event, computes an ID for the event based

on their code and their surrounding context in the DOM. If the computed ID of two events

match, they belong to the same similarity class:

	��, �0 ∈ F ⟺ G(��) = G(�0)

76

Where �� and �0 are events, and C is a similarity class. In other words, equality between the

computed ID of events is used as an equivalency function to partition the set of all events Σ′

into several similarity classes.

We define another function g that after a trial is made on an event, computes a separate ID

based on the execution outcome of the event. The result of the function on an event is

initially undefined until a trial is made. Therefore, initially

∀B∈ Σ′.		H(�) = I/�

And all the similarity classes are labelled ‘unknown’. As we perform trials, the result of

function g is discovered and more event classes are labelled as ‘similar’ or ‘dissimilar’. At

any given time, the following rules hold:

K!,�K�F	 � �8L8K!-	⟺	M∀BN,BO∈ F.		H(��) = H(�0)P ∧ (|5� ∈ F|H(E)	8�	Q�G8*�Q7| > ,)

K!,�K(F) = Q8��8L8K!-	 ⟺ ∃BN,BO∈ F.		H(��) ≠ H(�0)

K!,�K(F) = +*T*U@*	 ⟺ K!,�K(F) ≠ �8L8K!- ∧ K!,�K(F) ≠ Q8��8L8K!-

Where b is the number of adequate trials. Functions f and g and their return values will be

elaborated in section 5.3. As stated before, a similarity class C is independent from

component-states ! ∈ � and DOM-states	� ∈ �. Events in a similarity class can span

multiple component-states/DOM-states.

The overall algorithm is summarized in the following pseudo-code:

77

1. number_of_adequate_trials = 2 // user-adjustable variable

2. for (as long as crawling goes)

3. event ← select next event to be executed based on the exploration strategy

4. execute (event)

5. similarity_class ← get corresponding similarity class of (event)

6. if (similarity_class does not exist)

7. create similarity_class

8. similarity_class.label ← ‘unknown’

9. similarity_class.trials.add(event execution outcomes)

10. if (similarity_class.trials do not show similar outcomes)

11. similarity_class.label ← ‘dissimilar’

12. else if (similarity_class.trials.count = number_of_adequate_trials)

13. similarity_class.label ← ‘similar’

14. for each event in similarity_class

15. if (event is unexecuted)

16. mask(event)

17. if (all unexecuted events in RIA are masked) // crawler finished all dissimilar events

18. switch (user_setting_on_similar_events)

19. case (skip)

20. end the crawling.

21. case (postpone)

22. unmask all events in RIA

23. turn off similarity detection mechanism

For simplicity, the pseudo-code describes a rather inefficient but simplistic implementation

of the method.

If a class is labelled ‘unknown’ or ‘dissimilar’, its events are executed as usual according to

the exploration strategy. If a class is labelled ‘similar’, however, it masks its events (except

those already executed) from the exploration strategy so they are not executed (lines 14-

16). This is how the strategy is directed to diversify the crawl and find broader data as soon

78

as possible. A user-adjustable variable determines whether to skip or simply postpone

executing similar events. In line 17, after the crawler finishes exploring all other events in

the RIA, if the variable is set to ‘skip’, the crawling session terminates (line 20). Otherwise,

the masked similar events are now unmasked (lines 21-23) and the crawler proceeds to

execute them based on its exploration strategy. In the former case, the crawling cam finish

in substantially less time with maximum results. In the latter case, there is no positive

impact on the overall running time, but postponing similar events has resulted in the

crawler finding more diverse results earlier.

We believe that this method of categorizing events into classes is more effective than the

methods that simply detect lists (e.g. the one used in [41]) for our intended use case, since

it provides a more flexible framework for detecting, testing and handling similar events;

Most importantly because it detects similar events across the entire RIA, as opposed to a

single DOM. Moreover, it can deal with similar events that might be in different portions of

a DOM, and doesn’t require them to be necessarily in the form of lists. The next section

discusses classifying events into similarity classes in more detail.

 Solution Elaboration

In order to classify events in classes, a procedure is needed that given an event, returns the

similarity class it belongs to. (get corresponding similarity class of() procedure in the

pseudo-code above). Internally, the procedure uses information about the event that can

be obtained statically form the DOM, and computes a ‘similarity ID’ (function f in

section 5.2). Similarity ID is then matched between events to group them into similarity

79

classes. Events that have identical similarity IDs belong to the same similarity class. Because

similarity IDs have a one-to-one correspondence to similarity classes, they are used as

identifiers for similarity classes.

As hinted in the previous section, part of the similarity ID takes into consideration the

event’s characteristics, and part of it considers the event’s surrounding context. Appending

these two string forms the final similarity ID.

f(e) = concat(f1(e) , f2(c(e)))

Where f is the function that computes similarity ID of an event, e is the event, E��	 is the

context of event e, and f1 and f2 are functions that return strings. G1 is a function that takes

into account the event itself and f2 is a function that takes into account the event’s context.

Moreover, a similarity criteria is needed for event execution outcomes as well, in order to

compare them during the trials. As a result, event outcomes also have their own similarity

IDs (function g in section 5.2). Finally, in order to evaluate the effectiveness of this whole

crawl diversification mechanism, a criteria is needed for comparing crawling end-results.

Each of these parts are elaborated in the following sub-sections accordingly.

Event Similarity Part 1: Event String

We observe that events that have similar behaviour tend to call the same JavaScript

function, though maybe with different arguments. Moreover, they are usually attached to

HTML nodes of the same HTML element type. Based on these observations, our procedure

of producing a similarity ID is as follows: Write the event’s owner HTML node type as an

empty closed element, with all its attributes that contain a JavaScript call, replacing the

80

arguments passed to each function call by a single integer that shows the number of

arguments. Below is an example of part of a DOM that has two similar events:

<tr>

<td>Chelmsford</td>

<td>Accusation</td>

<td>

Joan Waterho…

</td>

</tr>

<tr>

<td>Spittal</td>

<td>Accusation</td>

<td>

John Hutto…

</td>

</tr>

With the method described above, the event’s part on similarity ID (return value of G1��		

would be:

Static analysis of the function body could also be performed to provide additional data,

which would make this algorithm more accurate but more computationally costly. In our

implementation, however, we did not use JavaScript static analysis due to its complexity.

Classifying events solely based on the event itself is sometimes insufficient. Sometimes the

context of the event also plays an important role in determining the event’s outcome.

Therefore, the context of events should also be taken into consideration when grouping

them based on their expected similar behaviour. The following section elaborates on this

matter.

81

Event Similarity Part 2: Context Similarity

Consider a RIA that has a list of products, and for each product it has a set of photos. Both

the product list and the photo album provide pagination using next/previous buttons. Since

the first set of buttons load a list of products while the other set load some picture, they

have dissimilar outcomes and therefore should be put in different similarity classes.

However, it can happen normally that all next/previous buttons in the RIA are implemented

using the same framework and therefore exhibit similar code. If only event code is used in

similarity ID, both sets of buttons would be placed in the same similarity class. Not only this

is unintended, but worse, it causes inconsistent behaviour, as described by the following

two scenarios:

Scenario 1: Based on the exploration strategy, the crawler executes a few trials on the

‘next’ button on the product list before it gets to the photo section. Because the trials show

similar outcomes, the similarity class is labelled ‘similar’ and therefore the crawler skips

executing the ‘next’ button on the photo section when it gets to it.

Scenario 2: Under a different exploration strategy, the crawler executes the ‘next’ button

on the product list once, and sometime later it executes it on the photo section before

getting to executing it on the product list twice. Citing the difference in outcomes, the

similarity class is labelled ‘dissimilar’ and therefore all next/previous buttons on all

paginations are executed during the crawl.

To avoid this problem, the surrounding context of an event must also be considered in

generating a similarity ID, so the next/previous buttons on a product list and on a photo

82

album are regarded as separate classes of events. In our implementation, we use an event’s

owner component-state as its context. A similarity ID is therefore defined on component-

states. (Denoted as	G2�E��)

Various methods used by different research studies for defining a state equivalency

criterion can be used as similarity ID for component-states. Examples are found in [41],

[32], [49], [50]. Our implementation uses a custom configuration on top of the method

introduced in [41] and applies it to the XML representation of the component-state. The

algorithm works as follows:

1. Any text content is disregarded

2. Algorithm finds a node whose children are all leaves in the tree.

3. Algorithm traverses the leaves and while traversing, it checks for patters of

consecutive repeating elements such as <A><C><A><C> (A sequence like

<A><C><D><A> in not considered such a pattern, since the repetitions of <A>

are not consecutive).

4. If pattern is detected, all the repetitions are eliminated.

5. The reduced sequence is sorted and is inserted into the parent node as text content,

turning the parent node into a leaf. In the abovementioned example of

<A><C><A><C> the result would be a new leaf node <Parent> with text "<A><C>"

(i.e. <Parent><A><C></Parent>).

6. Steps 2-5 are repeated until the XML is reduced to a single node.

83

7. Finally, a hash function such as MD5 is applied to the resulting XML to obtain a

fixed-length string. This string is then used by our method as the similarity ID for the

component-state.

By appending this string to an event’s computed string from previous section, we form the

event’s complete similarity ID, used to classify events.

Outcome Similarity

As stated earlier, similarity classes are labelled according to comparing similarity of trial

outcomes. Therefore, it is necessary to define a similarity criterion for event execution

outcomes as well. Defining outcome similarity depends on how event outcomes are

modelled. Since our implementation uses component-based crawling introduced in

chapter 3, event executions are modelled as multi-destination transitions, in which

destination states correspond to the component-states that appear as a result of the event

execution. Therefore, our outcome similarity ID (function g) is “the set of component-state

similarity IDs of the destination component-states”.

H��	 � 5G0��	|�E��	, �, �) ∈ �7

The component-state similarity ID of each individual destination is obtained using the same

function f2 introduced before. If future versions of the component-based model gather

more information about event execution outcomes, that information might as well be used

in the outcome similarity ID.

84

 Result Comparison

The similarity criteria introduced so far are enough for the functionality of the mechanism.

However, in order to study the effectiveness of the whole similarity detection mechanism

introduced in this chapter, we need to be able to compare different crawling end-results, to

see if the crawler indeed finds dissimilar results earlier by using this mechanism. Depending

on the crawler’s goal, crawling results are in different forms and thus different comparison

criteria need to be defined accordingly. A content scanner, for example, should have a way

to define similar content, whereas a crawler that scans for security entities needs to define

a specification for duplicate security entities.

 Experimental Results

In this section we perform experiments to study the effectiveness of Similarity Detection.

The goal is to observe the rate of finding dissimilar content during the crawl, and the impact

of enabling Similarity Detection mechanism on that.

All the experiments in this section are run using component-based crawling method. In

these experiments, as the crawler discovers new component-states, it examines the

similarity of the newly found component-state to those already found. At each step, the

number of dissimilar component-states found so far is logged. We can then use the log to

plot data gathering during the crawl. In the plots presented in this section, the x axis is the

number of events executed thus far and the y axis is the number of dissimilar component-

states found thus far. Therefore, the plots show how soon dissimilar content is found during

85

the crawling procedure. For comparing component-states for similarity, we use the

component-state similarity ID introduced in section 5.3.

Each experiment is run twice. In one, Similarity Detection mechanism is turned off and in

the other, the crawler is set to postpone similar events. The plots are presented below. In

all the charts, the red dotted line corresponds to execution without similarity detection,

and the blue solid line corresponds to execution with skipping similar events.

Figure 24. Finding dissimilar content during the crawl procedure in TestRIA, with and without Similarity

Detection mechanism

As we can see in Figure 24, on TestRIA enabling Similarity Detection mechanism successfully

helps us find dissimilar content much sooner. On TestRIA, there are paginated catalogs

(with next/previous buttons) of products, pictures, and services. The content shown for

each item in these categories has similar structure to the other items in the same category.

Therefore, after examining 2 pages of each section, Similarity Detection postpones

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

TestRIA

With Without

86

exploration of further paginated content to the end of crawl, resulting in us finding more

diverse content first.

Figure 25. Finding dissimilar content during the crawl procedure in ClipMarks with 3 list items, with and

without Similarity Detection mechanism

Figure 25 shows the same phenomenon in ClipMarks. ClipMarks has a list of items, and

each item in the list has similar behaviour. Enabling Similarity Detection in this case also

successfully results in finding more dissimilar content sooner, mainly due to the existence

of the list. Based on these results, we speculated that using the full RIA (which has 40 list

items in our snapshot) must showcase the effectiveness of Similarity Detection more

evidently. The results for running on the full version of ClipMarks are presented in Figure

26.

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

ClipMarks (3 items)

With Without

87

Figure 26. Finding dissimilar content during the crawl procedure in ClipMarks with 40 list items, with and

without Similarity Detection mechanism

As seen in Figure 26, Similarity Detection on the full version of the RIA provides a significant

benefit. The gap between the two lines in the chart increases as we increase the number of

list items in the RIA.

Figure 27. Finding dissimilar content during the crawl procedure in Altoro Mutual, with and without Similarity

Detection mechanism

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

ClipMarks (40 items)

With Without

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

Altoro Mutual

With Without

88

In Figure 27 we see result of experiments on Altoro Mutual. Altoro Mutual is an example of

a RIA in which all DOMs look different, and there is almost no similar parts in the RIA. As a

result, Similarity Detection cannot help in faster obtaining results in this RIA.

Figure 28. Finding dissimilar content during the crawl procedure in Bebop, with and without Similarity

Detection mechanism

Figure 28 displays results on Bebop. In this RIA, most of the contents of the entire RIA are

reachable within a few clicks from the initial DOM, and the main functionality of the RIA is

to sort and filter the same data in different manners. As a result, as seen in Figure 28, most

of the dissimilar contents are found soon even without the Similarity Detection mechanism.

However, turning on the Similarity Detection mechanism still helps in discovering the

contents even faster, although the difference may not seem as remarkable as in test cases

such as ClipMarks.

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

Bebop

With Without

89

Figure 29. Finding dissimilar content during the crawl procedure in elFinder, with and without Similarity

Detection mechanism

Finally, we study the effectiveness of Similarity Detection on elFinder. As we can see, our

Similarity Detection in not effective on all RIAs. In this case for example, the website code is

too complicated for our heuristic methods to find out similar events and classify them

together. As a result, most events are considered dissimilar and no useful change is made to

the order of executing events. More powerful heuristic functions for calculating similarity ID

may solve this problem in future.

To sum up, Similarity Detection can prove effective in some cases, allowing for diversifying

the crawl and finding dissimilar content sooner. On other test cases, however, our current

scheme provides no useful change in the direction of the crawler.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000

D
is

si
m

il
a

r
C

o
m

p
o

n
e

n
ts

 F
o

u
n

d

Events Executed

elFinder

With Without

90

 Conclusion

By detecting similarity between events, a crawler can cover dissimilar portions of the RIA

and produce the most diverse and comprehensive set of results in less amount of time. In

this chapter, we discussed the importance of similarity detection and provided a solution.

Our solution groups events into similarity classes based on heuristics, performs trials to

ensure similarity of members of a class, and helps the crawler skip similar events. Skipped

events can optionally be executed later.

Experimental results show that using this method can improve the speed of finding diverse

contents in some cases, and make no significant difference in other cases where the RIA

does not contain similar contents, or the heuristic cannot detect them.

91

6. Conclusions and Future Work

This thesis provides solutions for one of the most prevalent problems in the context of

crawling AJAX-based RIAs: state space explosion.

The main contribution of this thesis is presenting a novel crawling method called

Component-based crawling. The method solves the problem of state space explosion in

complex RIAs by identifying independent portions of a RIA and modeling the RIA in terms of

components rather than DOMs. Using this method, the crawler can explore complex RIAs

and finish the task in significantly less running times compared to other methods, with

minimal or no loss of coverage. Moreover, this method results in a much smaller model of

the RIA, which in turn allows for efficient analysis and testing of the model subsequently.

This document provides description of the model as well as a complete algorithm for

crawling RIAs using this model. The method is fully implemented and tested on a variety of

different test cases. Experimental results verify significantly better performance and

scalability of component-based crawling compared to DOM-based methods. Component-

based crawling opens door to crawling new web applications that were previously

uncrawlable.

In addition, Similarity Detection is introduced as a technique for diversifying the crawl. This

approach allows for gathering more heterogeneous sets of data earlier during the crawl

procedure, which can be of special importance during long crawling sessions. The method is

implemented and tested on a variety of test cases.

92

This work can be enhanced in several directions in possible future works. We provide a

discussion of these points as the final section of this document.

The method of detecting components based on DOM diffs has no direct correspondence to

the assumption that components are indeed independent. This means that dependent

components can potentially exist in the model. Dependent components violate the

assumptions of our crawling method, and can result in possible loss of coverage for the

crawler. A future direction for this research is to develop a method to detect dependent

components and merge them, in order to ensure proper coverage of the RIA.

As another direction, static analysis of the JavaScript functions can prove helpful for this

crawling method. It can provide more detailed information on events without executing

them, which can help in better similarity detection. Moreover, through static analysis we

might be able to discover dependencies and independencies among parts of a RIA, which

can greatly improve detecting independent components for component-based crawling.

In addition, more test cases are needed for a more comprehensive set of experimental

results. Obtaining test cases can itself be a challenge, since available tools offer limited

support for control over JavaScript execution. Therefore, deploying each new test case

often requires modifications to the RIA or the tools or both, to ensure compatibility. We

expect to have more experiments in the future to test the effectiveness of our proposed

method.

93

The heuristic functions used in Similarity Detection can be enhanced further in the future to

detect more types of similar content, in order to extend the applicability of this technique

to father RIAs.

Finally, adapting this method for distributed environments can help distributed crawlers in

using this method in an efficient way. Given the fact that components are expected to act

independently, and that the lack of knowledge about nested components does not impair

crawling the results, this crawling method has a good potential to be adapted for

distributed crawlers.

94

References

[1] J. Garrett, "Adaptive Path," [Online]. Available:

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications. [Accessed

24 September 2013].

[2] Adobe, [Online]. Available: http://www.adobe.com/flashplatform/. [Accessed 24

September 2013].

[3] W3C, "HTML5," 2013. [Online]. Available:

http://www.w3.org/html/wg/drafts/html/CR/. [Accessed 24 September 2013].

[4] [Online]. Available: https://developers.google.com/webmasters/ajax-crawling/.

[Accessed 12 September 2013].

[5] G. E. Coffmann, Z. Liu and R. R. Weber, "Optimal robot scheduling for web search

engines," Journal of Scheduling, vol. 1, no. 1, 1998.

[6] J. Cho and H. Garcia-Molina, "Estimating frequency of change.," ACM Transactions on

Internet Technology, vol. 3, no. 3, pp. 256-290, 2003.

[7] D. Roest, A. Mesbah and A. van Deursen, "Regression testing ajax applications: Coping

95

with dynamism," in ICST, 2010.

[8] J. Bau, E. Bursztein, D. Gupta and J. MitchellL, "State of the Art: Automated Black-Box

Web Application Vulnerability Testing," IEEE Symposium on Security and Privacy, pp.

332-345, 2010.

[9] A. Doupe, M. Cova and G. Vigna, "Why johnny can't pentest: an analysis of black-box

web vulnerability scanners," DIMVA'10, pp. 111-131, 2010.

[10] A. Z. Broder, M. Najork and J. L. Wiener, "Efficient URL Caching for World Wide Web

Crawling," in 12th International Conference on World Wide Web, Budapest, Hungary,

2003.

[11] C. Duda, G. Frey, D. Kossman and C. Zhou, "AJAXSearch: Crawling, Indexing and

Searching Web 2.0 Applications," VLDB, 2008.

[12] S. Choudhary, M. E. Dincturk, S. M. Mirtaheri, A. Moosavi, G. v. Bochmann, G.-V.

Jourdan and I. V. Onut, "Crawling Rich Internet Applications: the state of the art," in

CASCON 2012, Markham, 2012.

[13] A. Milani Fard and A. Mesbah, "Feedback-directed Exploration of Web Applications to

Derive Test Models," in 24th IEEE International Symposium on Software Reliability

Engineering (ISSRE), 2013.

[14] M. Harrold, R. Gupta and S. M., "A methodology for controlling the size of a test suite,"

96

TOSEM, pp. 270-285, 1993.

[15] I. Onut, N. Brake, P. Ionescu, D. Smith, M. Dincturk, S. Mirtaheri, G. Jourdan and G.

Bochmann, "A method of identifying equivalent JavaScript events on a page". Canada

Patent CA820110107.

[16] I. Onut, P. Ionescu, O. Tripp, A. Moosavi, G. Jourdan and G. Bochmann, "A method for

identifying client states of a Rich Interent Application". Canada Patent CA820120275,

CA920130043CA1, 28 5 2013.

[17] "IBM Security AppScan Enterprise," IBM, [Online]. Available: http://www-

03.ibm.com/software/products/us/en/appscan-enterprise. [Accessed 24 September

2013].

[18] W. W. W. C. (W3C), "Document Object Model (DOM)," [Online]. Available:

http://www.w3.org/DOM/. [Accessed 24 September 2013].

[19] "JavaScript," W3C: World Wide Web Consortium, [Online]. Available:

http://www.w3.org/TR/REC-html40/interact/scripts.html. [Accessed 24 September

2013].

[20] [Online]. Available: http://en.wikipedia.org/wiki/AJAX. [Accessed 16 September 2013].

[21] [Online]. Available: http://en.wikipedia.org/wiki/Xpath. [Accessed 16 September

2013].

97

[22] S. Raghavan and H. Garcia-Molina, "Crawling the hidden web," in 27th International

Conference on Very Large Data Bases, San Francisco, 2001.

[23] L. Barbosa and F. J., "Siphoning hidden web data through keyword-based interfaces,"

SBBD, pp. 309-321, 2004.

[24] S. W. Liddle, D. W. Embley, D. T. Scott and S. H. Yaul, "Extracting Data behind Web

Forms," Lecture Notes in Computer Science, vol. 2784, pp. 402-413, January 2003.

[25] A. Ntoulas, "Downloading textual hidden web content through keyword queries," JCDL,

pp. 100-109, 2005.

[26] J. Lu, Y. Wang, J. Liang, J. Chen and L. J., "An Approach to Deep Web Crawling by

Sampling," vol. 1, pp. 718-724, 2008.

[27] C. Duda, G. Frey, D. Kossmann, R. Matter and Chong Zhou, "AJAX Crawl: Making AJAX

Applications Searchable," in IEEE 25th International Conference on Data Engineering,

2009.

[28] F. G., Indexing ajax web applications, ETH Zurich, 2007.

[29] R. Matter, Ajax crawl: Making ajax applications searchable, ETH Zurich, 2008.

[30] D. Amalfitano, A. Fasolino and P. Tramontana, "Reverse Engineering Finite State

Machines from Rich Internet Applications," in Proc. of 15th Working Conference on

Reverse Engineering, Washington, DC, USA, 2008.

98

[31] D. Amalfitano, R. Fasolino and P. Tramontana, "Rich Internet Application Testing Using

Execution Trace Data," in Proceddings of Third International Conference on Software

Testing, Verification, and Validation Workshops , Washington, DC, USA, 2010.

[32] A. Mesbah, E. Bozdag and A. v. Deursen, "Crawling AJAX by Inferring User Inferface

State Changes," in 8th Int. Conf. Web Engineering, ICWE, 2008.

[33] S. Lenselink, Concurrent Multi-browser Crawling of Ajax-based Web Applications, TU

Delft, 2010.

[34] A. Mesbah and A. van Deursen, "Invariant-based automatic testing of ajax user

interfaces," in ICSE, 2009.

[35] Z. Peng, N. He, C. Jiang, Z. Li, L. Xu, Y. Li and Y. Ren, "Graph-based ajax crawl: Mining

data from rich internet applications," in International Conference on Computer Science

and Electronic Engineering(ICCSEE 2012), 2012.

[36] K. Benjamin, G. Bochmann, M. Dincturk, G.-V. Jourdan and I. Onut, "A Strategy for

Efficient Crawling of Rich Internet Applications," in Web Engineering: 11th International

Conference, ICWE, Paphos, Cyprus, 2011.

[37] S. Choudhary, M-Crawler: Crawling Rich Internet Applications Using Menu Meta-Model,

Ottawa: University of Ottawa, 2012.

[38] M. Dincturk, S. Choudhary, G. Bochmann, G. Jourdan, I. Onut and P. Ionescu, "A

99

Statistical Approach for Efficient Crawling of Rich Internet Applications," in

International Conference on Web Engineering (ICWE 2012), Berlin, Germany, 2012.

[39] A. Mesbah, A. van Deursen and S. S Lenselink, "Crawling AJAX-Based Web Applications

through Dynamic Analysis of User Interface State Changes," TWEB, vol. 6, 2012.

[40] K. Benjamin, A Strategy for Efficient Crawling of Rich Internet Applications, Master's

Thesis, University of Ottawa, 2010.

[41] K. Ayoub, H. Aly and J. Walsh, "Dom based page uniqueness indentification". Canada

Patent CA2706743A1, 2010.

[42] E. Dincturk, Model-based Crawling - An Approach to Design Efficient Crawling

Strategies for Rich Internet Applications, Ottawa: University of Ottawa, 2013.

[43] C. Bezemer, A. Mesbah and A. v. Deursen, "Automated Security Testing of Web Widget

Interactions," in Foundations of Software Engineering Symposium (FSE), ACM, 2009.

[44] A. Heydon and M. Najork, "Mercator: A scalable extensible web crawler," WWW, vol.

2, pp. 219-229, 1999.

[45] "Altoro Mutual," [Online]. Available: http://altoromutual.com. [Accessed 1 October

2013].

[46] "Clipmarks," [Online]. Available: http://www.clipmarks.com/. [Accessed March 2011].

100

[47] "Periodic Table," [Online]. Available: http://code.jalenack.com/periodic. [Accessed 17

May 2012].

[48] "elFinder," [Online]. Available: http://elfinder.org/. [Accessed 07 October 2013].

[49] C. Duda, G. Frey, D. Kossmann, R. Matter and C. Zohu, "AJAX Crawl: Making AJAX

Applications Searchable," in IEEE 25th International Conference on Data Engineering,

2009.

[50] D. Amalfitano, A. Fasolino and P. Tramontana, "Experimenting a Reverse Engineering

Technique for Modelling the Behaviour of Rich Internet Applications," in ICSM 2009,

Edmonton, 2009.

[51] "JQuery FileTree," [Online]. Available:

http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/. [Accessed 2013].

