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Abstract 

 

During the past decade, web applications have evolved substantially. Taking advantage of 

new technologies, Rich Internet Applications (RIAs) make heavy use of client side code to 

present content. Web crawlers, however, face new challenges in crawling RIAs. The 

problem of crawling RIAs has been a focus for researchers during recent years, and 

solutions have been proposed based on constructing a state-transition model with DOMs as 

states and JavaScript events as transitions. When faced with real-life RIAs, however, a major 

problem prevalent in current solutions is state space explosion caused by the complexity of 

the RIAs. This problem prevents the automated crawlers from being usable on complex RIAs 

as they fail to produce useful results in a timely fashion. This research addresses the 

challenge of efficiently crawling complex RIAs with two main ideas: component-based 

crawling and similarity detection. Our experimental results show that these ideas lead to a 

drastic reduction of the time required to produce results, enabling the crawler to explore 

RIAs previously too complex for automated crawl. 
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1.  Introduction 

In today’s world, crawlers are in charge of various tasks. They need to adapt to the ever-

changing web technologies and trends. Traditionally, web applications consisted of a set of 

pages accessible through unique URLs. The server side carried out any computations and 

the client side was only responsible for rendering the results. Later, newer web 

technologies such as AJAX [1], Flash [2] and HTML5 [3] transformed this architecture and 

enabled a new breed of web applications called Rich Internet Applications (RIAs). RIAs 

provide more sophisticated client side functionality, improving user experience and 

reducing communication between the client side and the server side. Today, these 

technologies are in widely used. Crawlers, however, have problems in exploring RIAs 

automatically. Several studies have been conducted around crawling and testing RIAs in 

general, and AJAX-based RIAs in particular. Current solutions in this recent research area 

present limited capabilities and fail to operate effectively on complex examples. To our 

knowledge, currently, no major industrial players use real RIA crawling techniques. Instead, 

they ask RIA owners to provide their content in a crawler-friendly manner [4]. This research 

work focuses on developing crawling solutions with acceptable performance on large-scale 

and complex AJAX-based RIAs, with the aim of creating technology that suits industrial 

needs. 

In this chapter we discuss crawlers and why they face challenges when dealing with RIAs in 

section 1.1. We then describe an existing shortcoming in the current solution that is in use 

by research prototypes, and the importance of resolving this issue in section 1.2. Finally, in 
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section 1.3 we summarize the contributions of this research work in addressing this 

challenge. 

 Crawling RIAs 

Crawling is the process of exploring a web application automatically. Crawlers are essential 

tools in today’s world of web-oriented applications and services. Crawlers are used for a 

variety of purposes, such as content indexing (for example for use by a search engine) [5] 

[6], automated regression testing (as part of software development process) [7], black-box 

security and accessibility assessment [8], [9]. 

With the advent of new web technologies such as AJAX and Flash, there has been a shift in 

web applications design towards putting more complexity on the client side in the form of 

executable code. Increasingly, more and more modern web applications rely heavily on 

client-side code to fetch and present their content. By using these technologies RIAs can 

make incremental updates to the client state of the application, rather than loading 

complete pages from the server. In the case AJAX-based RIAs, for example, the application 

can use JavaScript code to manipulate the DOM on the client side, optionally contacting 

sever and adding new data to client state without changing the URL.  

As these technologies are already in widespread use, it is more important than ever before 

for crawlers to support them. While using these technologies has provided benefits for 

users such as increased interactivity and responsiveness, they introduce challenges for 

crawlers. 
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 Challenges 

Traditional methods of crawling are not sufficient to cover complete content of a RIA, since 

these methods are built on assumptions that are no longer valid in RIAs. Traditionally, 

crawlers use Unified Resource Locators (URLs) to navigate through the web. A web crawler 

is fed with a list of seed URLs that it starts from. For each URL, it loads the page and adds 

any URLs linked from that page to its working queue [10]. If the link is already visited, there 

is no need to visit it again. Once all discovered URLs are visited, the crawling job is finished, 

as it has covered all the content that is reachable from the seed URLs via hyperlinks. This 

method is based on the assumption that URLs correspond to client states. While this 

method is sufficient for crawling traditional web applications, RIAs break the functionality 

of this method in two ways. 

Firstly, as stated earlier, a RIA can update its client state without making a change in the 

URL. Therefore, client states in RIAs no longer have a one-to-one correspondence to URLs. 

Executable objects on the client side can alter the client state and present new data that is 

important for the crawler, with or without contacting the server. Therefore, the crawler 

should have a clear distinction between client states and URLs, as now many client states 

are possible within the same URL. In the case of AJAX-based RIAs, it is executing JavaScript 

Events (simply called ‘events’ in this thesis) that can alter the client state, and replace the 

use of URLs in traditional web applications as a means to reach different states. It is 

possible to build a complete RIA with a single URL using AJAX. As a result, only visiting URLs 

is not sufficient to cover the content of a RIA anymore. To ensure content coverage, the 

crawler should have a method to explore all client states under the same URL. 
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Secondly, events have a more complicated behaviour than URLs. It is usually safe to assume 

that navigating to the same URL, from anywhere in the website, will always result in the 

same webpage. This is not the case for events, though. The result of execution of an event 

has more determinant factors than that of navigating to a URL. Since events can read data 

from the client state of the application to determine what to do, they can be “state-

dependent”. The crawler needs to examine the same state-dependent event from different 

client states in order to ensure proper coverage. 

Due to the aforementioned challenges, crawling RIAs needs different techniques and 

methods than crawling traditional web applications. Currently, industrial search engines 

provide no better solution other than asking RIA owners to manually provide “html 

snapshots” of their content to make them searchable [4]. This approach puts the burden of 

providing information on the shoulders of the programmers instead of crawlers, and 

enforces a big maintenance cost since html snapshots are to be manually kept up-to-date 

whenever there is an update to the RIA. This contradicts the goal of crawlers whose 

purpose is to aid in maintenance of a web application by automatic scanning and reporting 

issues. 

The problem of crawling AJAX-based RIAs has been a focus of research studies during the 

past few years. These research works commonly use a state-transition model to represent a 

RIA, which is introduced briefly in the following section. 
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 The State of the Art Solution: The State-Transition Model 

Common approach for RIA crawling in the studies is to define client states based on the 

Document Object Model (DOM) on the client. The RIA is then modelled as a finite state 

machine, where DOMs are represented as states and event executions are represented as 

transitions. By executing events, the crawler can navigate the RIA and reach different DOM-

states. The problem of crawling a RIA is then modelled as walking in an unexplored directed 

graph. This model and its assumptions and limitations will be elaborated in Chapter 2, 

together with the approaches in the literature for crawling RIAs using this model. 

The research topic of crawling RIAs is relatively new and the amount of research work in 

this area is limited. Research works mostly focus on other aspects of RIA crawling, such as 

parallelizing the crawl or performing security tests using the extracted model. While these 

works have been successfully applied to sample test cases, their applicability is subject to 

the limitations of the crawling method they use. To our knowledge, the state-transition 

model is the only major model presented for crawling complete content of RIAs, and 

several research projects use it in their crawling method. This model, however, quickly loses 

scalability as the RIA complexity grows. 

Many RIAs today are feature-rich applications, rather than merely a set of pages. These 

“complex RIAs” have several functionalities, each acting independently of the others. 

Examples include social networking sites, widget-based RIAs, Content Management 

Systems and more. The user is free to choose among many actions at all times, and each 

different combination of these actions shapes the DOM differently. The state-transition 
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model faces a state space explosion problem when applied to complex RIAs. This problem is 

the main motivation behind this research to develop methods of crawling that can run on 

complex RIAs. 

 Motivations 

A major challenge affecting current research works is state space explosion. This problem 

has been reported several times in publications from various research teams working in this 

area [11], [12], [13]. Real-life RIAs tend to produce a large number of states in the state-

transition model. Even a RIA with a limited set of functionalities can easily present a large 

number of different DOMs, the majority of which do not contain interesting information for 

the crawler. For example, many new DOMs can be generated simply by presenting a 

different combination of already-presented data. As a result, not only does the crawl take 

an excessive amount of time, and the user might have to terminate the crawl prematurely, 

but this also leads to the production of extremely large models, which in turn makes 

analyzing or testing the model expensive and impractical [14]. Moreover, in the presence of 

time limits, the crawler might spend its valuable time on exhaustive crawling of irrelevant 

regions of the RIA, leading to a model that has poor functionality coverage despite its large 

size. 

Without a proper crawling method that can grasp complex RIAs and deduce a reasonable-

sized model from them, tools that rely on crawling will be unusable for real-life scenarios. 

Tools and techniques developed in research studies need to be able to handle industrial use 
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cases in a timely manner in order to be applicable in industrial needs. This research is partly 

funded by IBM, with the aim of developing a crawling method suitable for industrial use.  

We aim to address the challenge of crawling complex RIAs by introducing a novel method 

for crawling, called “Component-Based Crawling”. Component-based Crawling breaks 

down the state space by capturing independent portions of the DOM tree and assigning 

separate states to them. Component-based crawling is able to cover complete content of a 

RIA in a substantially more efficient manner than the current methods, without running into 

state space explosion where current methods do. We also present a useful technique 

“Similarity Detection”, which helps covering as much functionality of the RIA as possible in 

a limited time by detecting similar structures and events and avoiding them in order to 

diversify the crawl. Both the methods are filed by IBM as patents [15], [16] and 

implemented in prototype versions of IBM AppScan Enterprise (ASE) [17]. 

 List of Contributions 

The major contributions of this work are summarized in the following list: 

−−−− A meta-model for expressing a RIA as a set of independent components and their 

interactions 

−−−− An algorithm for crawling complex RIAs using the abovementioned meta-model 

−−−− An algorithm and criterion for predicting similar portions of a RIA and diversifying 

the crawl 

Moreover, in order to achieve and validate the above-mentioned goals, we also provide: 
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−−−− Implementation of the abovementioned techniques as a working RIA crawler 

−−−− Experimental studies on the performance of the abovementioned techniques and 

comparison against state of the art techniques 

−−−− Experimental studies on the scalability of component-based crawling as data in a RIA 

grows 

 Organization of the Thesis 

This thesis is organized as follows: 

Chapter 2 provides a detailed description of the state-transition model, its assumptions and 

limitations. It discusses how state of the art research works define the model, and attempt 

to avoid state space explosion. Chapter 3 describes the Component-Based Crawling method 

by first describing the meta-model and then the algorithm that uses the meta-model for 

crawling. Chapter 4 provides our experimental results on the effectiveness of this method. 

Chapter 5 describes the Similarity Detection technique, and Chapter 6 provides conclusion 

marks possible future directions for this work of research. 
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2.  The State of the Art 

In this chapter, we present an overview of current research for crawling AJAX-Based RIAs. 

After a brief introduction to some concepts in this field in section 2.1, in section 2.2 we 

provide a detailed description of the State-Transition model, the method commonly used 

for crawling RIAs. We then follow with a discussion on how different studies use various 

versions of this model. Next, in section 2.3 we discuss the state space explosion problem, 

various techniques proposed in the literature for tackling this problem and their 

effectiveness, before introducing our proposed techniques in latter chapters. 

 Introduction 

There are a few terms and abbreviations used in this document that might need description 

for a reader unfamiliar with this topic. When a browser loads an HTML document, it builds a 

“DOM” (Document Object Model), which is a structural representation of the document 

[18]. The DOM provides a language independent interface for scripting languages such as 

JavaScript [19] to access the structure of the document. The browser allows these scripting 

languages to modify the DOM, and renders the modifications for the user. When the client 

reloads the URL of the document (i.e. issues a “reset”), the document is fetched from the 

server again and the DOM is rebuilt to its initial un-modified state. “AJAX“(Asynchronous 

JavaScript and XML) is a technology that allows the client side JavaScript code to 

communicate with a server asynchronously (in the background) without interfering with the 

display and behavior of the existing page [20]. 
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In order to locate nodes in a DOM (or an XML document), a standard query language called 

XPath (XML Path Language) is used [21]. A node’s path representation using XPath is not 

unique, as XPath syntax allows several ways to query nodes. Likewise, an XPath query may 

return multiple nodes. The way we utilize XPath queries in this work is discussed in 

section 3.3.2. 

 Architecture of an AJAX-based RIA 

Web applications use a client-server architecture. The state of the client side of the 

application consists of the DOM tree, the URL, possible cookies, etc. In RIAs, the client must 

also provide an execution environment to encompass and run the client side code of the 

RIA, therefore there are additional elements that determine the client state (e.g. the value 

of JavaScript variables in an AJAX-Based RIA). In an AJAX-Based RIA, triggering execution of 

a JavaScript event can result in changes to the client state, and possible message exchanges 

with the server, making a change in the server state as well. Crawlers, just like users, do not 

have access to the server state. They typically make certain assumptions about the server 

states to assume completeness of their crawl. For example, the simplest form of 

assumption would be inexistence of server states, in which case the crawler is allowed to 

cache client states and restore them at will, without informing the server. 
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AJAX, as its full name suggests, provides the possibility of asynchronous communication 

between the client and the server. Asynchronous communication means that when the 

browser sends a request to the server, it does not block the user and allows her to continue 

interacting with the web application. Therefore, the user can generate more requests to the 

server at the same time she is waiting for the response of the previous requests. An 

asynchronous interaction scenario with AJAX is depicted in Figure 1. 

Figure 1: Example of asynchronous communication using AJAX calls (appeared in [42]) 
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Upon sending an AJAX request to server, one must also specify its callback method. The 

callback method is the code that is to be run when the response arrives, to handle the 

response data. The callback method can modify the client state using the data received, for 

example updating part of the DOM. 

 The State-Transition Model 

Common approach in studies is to model a RIA as a finite state machine (FSM), and use 

DOM as an identifier for client states. In the FSM, states represent DOMs and transitions 

Figure 2. An example of a simple state-transition model 



13 

represent event executions. Events can lead from one DOM-state1 to another. 

The FSM can be defined as a tuple � = (�, ��,Σ, �) where S is the set of DOM-states, s1 is 

the initial DOM-state (when the URL of the RIA is loaded), Σ is the set of events, and � is a 

function � ×Σ → S that defines the set of valid transitions. At any given time, the 

application is in one DOM-state, referred to as the current DOM-state. When	�(��, �) = ��, 

it means that we can reach to DOM-state �� by executing event � from DOM-state	��. Not 

all events are available in all DOM-states; therefore, � is a partial function. 

One simplifying assumption that is usually made is that the behaviour of the RIA is 

deterministic from the point of view of the crawler. This means that if we go back to a 

visited DOM-state using valid transitions and execute an event that we had explored 

before, the resulting DOM-state will be the same as before. Hence we are allowed to model 

the RIA as a deterministic FSM. Based on this assumption, by executing each event form 

each DOM-state once and building a complete FSM model, the crawler can assume the 

crawling is done, and that the resulting FSM is a representative model of the system. 

However, the crawler is not allowed jump to arbitrary DOM-states at will (e.g. by saving 

DOM-state in advance and restoring it when desired). Instead, it has to take available 

transitions in order to transfer between DOM-states. This is done to ensure the RIA is being 

explored as it was intended to be explored by a user. Jumping between arbitrary DOM-

states would bypass any server communication that would take place along the way, 

                                                      

1  Related works in the literature commonly refer to DOM-states simply as “states”. In this work, in 

order to emphasize the difference between “component-states” which we use in our method and DOM-

states, we refer to them explicitly as DOM-states. 
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possibly breaking the functionality of the RIA. If the desired DOM-state is not reachable 

from the current DOM-state using a chain of transitions (called a "transfer sequence"), the 

crawler needs to issue a "reset" (reloading URL of the initial page) to go to the initial DOM-

state of the RIA and take a transfer sequence from there. Resets are usually modelled as 

special transitions from all DOM-states to the initial DOM-state. 

At the beginning, the only known DOM-state is the initial DOM-state and all its events are 

unexecuted yet. By executing an unexecuted event, the crawler discovers its destination, 

which might be a known DOM-state or a new one. The event execution can then be 

modelled as a transition between its source and destination DOM-states. 

An FSM � = (�, ��, Σ, �) can also be represented as a directed graph	� = (�, �), where V is 

a set of vertices, and E is a set of directed and labelled edges, where (�� , ��; �) is an edge 

from vertex	��  to vertex ��  with label e. We can define a bijective function �: � → � 

between states in the FSM and vertices in the graph. The transitions in the FSM will 

correspond to edges in the graph: 

�(��, �) = �� ⟺ ��(��), �(��); �� ∈ � 

The graph can optionally be a weighted graph to reflect time cost of each transition. 

The problem of crawling a RIA is therefore that of exploring an unknown graph. At any 

given time, the crawler needs to execute an unexecuted event, or use the known portion of 

the graph to traverse to another DOM-state to execute one, until all events in the graph 

have been executed, at which point the graph is fully uncovered and the crawling is 
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finished. Resets do not need to be ‘uncovered’ since their behavior is known, but they can 

be used as auxiliary edges when using a path to reach from one node to another. 

Based on this model, different exploration strategies (such as Depth-First-Search (DFS), 

Greedy and Model-Based strategies) have been suggested and evaluated by related works 

on sample experimental RIAs. Comparing different exploration strategies is usually done 

based on the sum of all events and resets executed during the crawl (possibly considering 

the time cost of each of them) until finished, which we refer to as "exploration cost". 

 Assumptions 

In order to function properly, the state-transition model makes certain assumptions about 

the RIA. We list these assumptions here for clarity: 

−−−− Server states: As stated before, the crawler has no access to server states. It only 

crawls based on observing client states and assumes that server states have no 

impact on the determinism of the model. Issuing a ‘reset’ is assumed to always take 

the client to its initial state, and executing an event from a client state is assumed to 

always lead to the same client state. If there is a change in the server state that is 

not directly observable on the client side, this assumption is violated. This can 

potentially affect the behaviour of events, and result in non-deterministic behaviour 

of those events from the crawler’s point of view. 

−−−− Serializing AJAX calls: As explained before, AJAX calls work asynchronously, and 

browsers do not prevent users from triggering additional events while other events 

are still pending. One simplifying assumption that the state-transition model makes, 
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however, is that events are executed one after another. Once an event is triggered, 

the crawler waits for the response of the any AJAX calls made to the server to be 

received and processed fully before declaring the new client state as the destination 

of the event. 

−−−− User inputs: User inputs are also modelled as events. However, the number of 

values that can be entered (for example, in a text field), is very high. It is usually 

infeasible to try all possible values during the crawl. Instead, we assume that the 

crawler is provided with a set of user inputs to be used. The completeness of the 

model is then subject to the values provided. The problem of generating a 

comprehensive set of user inputs is not specific to RIAs. Any general methods used 

for this purpose can be applied in the context of RIA as well. Example research 

studies in this field can be found in [22], [23], [24], [25], [26]. 

 Use in the literature 

Several works study crawling RIAs using the state-transition model. In one of the earliest 

works, Duda et al. assume the ability to cache and restore DOM-states at will [11]. They use 

a Breadth-First-Search (BFS) algorithm to explore a RIA in [11], [27], [28], [29]. However, as 

stated beforehand, this assumption limits the crawling capability in the existence of server 

states. 

Amalfitano et al. also focus on obtaining a state-transition model from a RIA, and using the 

model for generating test suits for the RIA. In their initial work [30], they use manual user-

sessions to extract execution traces and build a model. In their follow-up paper [31] they 
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automate their tool by using a DFS exploration strategy. Mesbah et al. [32] introduce their 

tool ‘CrawlJax’ for crawling and extracting a model from a RIA. It is able to take a static html 

snapshot of each DOM-state and build a non-AJAX version of the website in the end. 

CrawlJax also uses DFS algorithm to explore the RIA. By default, CrawlJax assumes all events 

in the RIA to be “state-independent” events, and explores each event only from the DOM-

state where the event was first encountered. The event is not explored on the subsequently 

discovered DOM-states. This results in a partial coverage the RIA in the existence of state-

dependent events, which is commonly the case. CrawlJax can also be configured to explore 

all events in each DOM-state. The authors use CrawlJax in many subsequent papers and 

focus on multi-threading [33], security testing on the obtained model [34] [7], etc. 

Some research works focus on improving the efficiency of crawling a RIA by focusing on the 

exploration strategy used. Peng et al. propose using a greedy algorithm as exploration 

strategy in [35] that out-performs DFS and BFS exploration significantly. Our work uses the 

same greedy approach for its exploration strategy. The authors of [36], [37], [38] introduce 

various model-based crawling strategies to be used as exploration strategy, and sum up the 

performance evaluation of all their exploration strategies in [12]. 

The crawler needs to have a DOM equivalency function to compare the current DOM-state 

against the previous ones, and determine if it is equal to any previous DOM-states or not. It 

is a common approach consider DOMs with minor differences as the same DOM-state. The 

DOM equivalence function varies among different research works. [27] Uses strict equality 

to compare DOMs. CrawlJax uses a distance function to compute the edit distance between 

different DOMs [39], and considers them as the same DOM-state if the distance is below a 
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certain threshold. The works presented in [40], [37], [38] apply some reduction and 

normalization functions presented in [41] on the DOM to exclude the irrelevant data before 

comparing DOMs 

 The Problem: State Space Explosion 

One major challenge in this field is state space explosion. Most RIAs tend to present a very 

large number of DOM-states that cannot be crawled in a reasonable time. Usually in RIAs, 

numerous events exist in each DOM-state, and each makes a slight change to the DOM. It is 

possible for different combinations of these events to result in many different DOM-states 

that have no new data, but are merely a new combination of already-seen data. This 

phenomenon can cause the model of a complex RIA to grow extremely fast, sometimes 

exponentially, in proportion to the number of events in the RIA. Because of this problem, a 

RIA with a small set of functionalities can produce a very large state space. As a result, the 

crawler will not be able finish the crawl and waste its time on exploring many events in 

DOM-states that exhibit no new data. This is the main problem causing the current 

methods to fail as effective crawlers on complex RIAs. 

Previously mentioned DOM-equivalence methods do not provide a complete solution for 

this problem. Various research works that use different DOM-equivalency methods report 

inability to cover the content of RIAs comprehensively without falling into state space 

explosion. Duda et al point to this exact problem of Cartesian state space explosion caused 

by independent parts in [11], using figures and examples, as an unresolved challenge. The 

authors of [12], which sums up model-based crawling methods also mention the problem of 
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visiting new DOM-states with no new data. CrawlJax authors point to the problem in one of 

their newest papers [13]. The main contribution of this thesis is to introduce a novel 

method called “Component-based Crawling” to solve this problem. Component-based 

crawling, introduced in chapter 3, aims to cover complete content of a RIA with a model 

and exploration cost that can be exponentially smaller than other methods, by identifying 

independent parts of a RIA and taking them into account separately. Using Component-

based Crawling, crawlers will be able to explore a new set of RIAs that were previously 

deemed too complex for complete coverage. 

There are also other techniques used in the literature to improve efficiency. CrawlJax by 

default focuses on exploring only new events that appear on a DOM after an event 

execution. This approach of limiting the crawler’s attention to only a portion of the state 

space helps avoiding irrelevant DOM-states and finishing the crawl with a reasonable 

amount of data gathered. However, it does not solve the problem of covering complete 

content of a RIA. Moreover, often in complex RIAs a structure such as a widget frame can 

appear through many different event execution paths. In such case, the aforementioned 

approach explores all occurrences of the structure in the RIA, which can again lead to state 

space explosion. 

Due to excessive times in crawling large-scale RIAs in these methods, it was suggested that 

finishing the crawl might be unreasonable in many cases and the crawler should aim to 

cover a reasonable amount of content when crawling is terminated midway [12], [42], [13]. 

The authors of CrawlJax acknowledge inability to finish crawl in a later paper [13] and focus 

on diversifying the crawl to obtain more results in a limited time. We present our own 
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technique for diversifying the crawl in chapter 4. It is implemented and tested on top of the 

component-based crawling algorithm in our prototype crawler. 
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3. Component-based Crawling 

In this chapter we introduce component-based crawling, our proposed method of crawling 

that overcomes some common problems in RIA crawling. Component-based crawling 

models the RIA in a different way than the state-transition model introduced in section 2.2, 

and achieves a significantly better efficiency. 

This chapter is organized as follows: Section 3.1 describes the problem that we are going to 

solve, and section 3.2 presents the general overview of our solution. We first describe in 

detail the model of the website that the crawler builds, and then move on to describe how 

the crawler builds this model and makes use of it during the crawl. Section 3.3 contains 

detailed description of the model, and section 3.4 contains detailed discussion of the 

algorithm. A discussion of some challenges in our proposed method is provided in 

section 3.5. Experimental results and comparisons are presented separately in chapter 4. 

 Problem Statement 

The main challenge a crawler faces is state space explosion in the RIA model that causes the 

crawler to take excessive time to finish the crawl. Most of the time state space explosion is 

caused by different mixtures of the same data, leading to new DOMs and producing a large 

state space for a small functionality of the RIA. In a typical RIA, it happens very often that a 

new DOM-state is encountered that contains no new data and is only a different 

combination of already-known data. The usefulness of these combinations depends on the 

aim of the crawl. Usually exploring these combinations is not desirable for the crawler. 
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Today’s complex RIA interfaces consist of many interactive parts that act independently, 

and the Cartesian product of different content that each part can show easily leads to an 

exponential blow-up of the number of DOM-states. A fairly intuitive example is widget-

based RIAs, in which various combinations of contents that each widget can show creates a 

large volume of different DOM-states. Not all these DOMs are of interest to the crawler. A 

content indexing crawler, for instance, needs to visit every piece of content once and finish 

in a timely fashion. These rehash DOM-states only lengthen crawling while providing no 

new data. Figure 3 provides an example. 

This issue is not just limited to widgets, but is present in any independent part in RIAs down 

Figure 3. Example of a new DOM-state with no new data. The DOM in (c) is only a combination of data already 

present in (b) and (a), but will have a new DOM-state in the existing methods 
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to every single popup or list item. Typical everyday websites such as Facebook, Gmail and 

Yahoo contain tens of independent parts in every snapshot. The situation is similar with any 

typical RIA mail client, enterprise portal or CMS. Different combinations of these 

independent parts lead the crawlers into crawling a lot of new DOM-states with no new 

data. A human user, on the other hand, is not confused by this issue since he views them as 

separate entities with independent behaviour, and assumes that the behaviour of one is 

not affected by another. In fact, the user would be surprised if the behavior of one of these 

parts turns out to be dependent on another. 

Based on this observation, unlike the existing solutions, we decide to avoid modelling client 

states of RIAs considering the whole DOM of the page. We propose a novel method to 

crawl RIAs efficiently by modelling in terms of states of individual subtrees of the DOM that 

are deemed independent, which we call ‘components’. Our method detects independent 

components of a RIA based on difference between DOMs. By modelling at component level 

rather than at the entire DOM level, the crawler will be able to crawl complex RIAs 

exponentially faster while still covering all the content. The resulting end-model is smaller 

and therefore easier for humans to understand and for machines to analyze, while 

providing some more detailed information about the RIA that is absent from DOM level 

models. 

In the context of detecting independent parts, static widget detection methods such as [43] 

have been developed. However, they are designed only to detect widgets, which are a small 

subset of independent entities in RIAs. Moreover, unlike our method these methods are 

based on a set of predefined rules, and do not adapt to individual RIAs by observing 



24 

behavior of the RIA. We are not aware of any other research that handles independent 

parts of a RIA. 

 Solution Overview 

Our solution is to model the RIA at a finer level in terms of meaningful subtrees of the DOM 

(called ‘components’) instead of modelling in terms of entire DOMs. By building a state-

machine at the component level, we have a finer knowledge of how the RIA behaves, which 

helps in addressing the aforementioned problems and letting the crawler crawl more 

efficiently. The crawler can use this model regardless of its exploration strategy. Our 

prototype implementation uses the greedy algorithm presented in [35] as the exploration 

strategy, aggregated with our method to use component-states instead of DOM-states. In 

this section we present a brief introduction of the concept of components, how they help, 

and how the crawler can discover them. 

Let us discuss the concept of components from the point of view of a human user, and then 

from the crawler’s point of view, as illustrated in Figure 4. In a typical real-life RIA, each part 

of the page interacts with the user independently, and so the user normally thinks of these 

parts as separate entities. Examples of components include menu bars, draggable windows 

in Twitter, as well as each individual tweet, chat windows in Gmail, the notifications drop-

down and mouse-over balloons in Facebook, etc. The user normally expects to be able to 

interact with each component independently from other components on the page. 
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Based on this observation, our aim is to detect these components and have the crawler to 

reverse-engineer the RIA by analyzing the behavior of each component independently, thus 

avoiding the complexity of analyzing the mixture. This assumption of independency 

between components is important in our method for providing full coverage. We expect 

this assumption to hold true in almost all real-life RIAs as it follows human user intuition. If, 

however, there are components on a particular RIA that affect each other, the crawler 

might lose coverage of some content since it does not try out all different combinations of 

the components. As current experimental results show, this situation rarely happens when 

the components are well defined. 

Figure 4. (a) A webpage, (b) components on the page the way a human user sees them as entities of the page, 

and (c) the way the crawler sees them as subtrees of the DOM. 
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Since components appear as subtrees in the DOM tree, we partition the DOM into multiple 

subtrees that are deemed independent of each other. We assign component-states to each 

subtree, instead of assigning a DOM-state to the entire DOM as a whole. Each component 

has a set of possible component-states, and a component-state of a particular component 

is only compared to other component-states of the same component. In our model, at any 

given time, the page that the user sees is not modelled by one DOM-state. Instead, the 

page is in a set of component-states, since it consists of different components each of 

which has its own component-state. It is worth mentioning that the DOM is partitioned into 

components in a collectively exhaustive and mutually exclusive manner, meaning that each 

XML-node on the DOM tree belongs to one and only one component. 

Successfully modelling a RIA at the component level provides numerous benefits. The most 

obvious one is that it can avoid state space explosion caused by rehash DOMs, as depicted 

previously in Figure 3; since only newly seen component-states on a DOM contribute to the 

state space. Moreover, this fine-grained view of RIA helps the crawler map the effect of 

event executions more precisely, resulting in a simpler model of the RIA with fewer states 

and transitions. As a result, the crawler can traverse the RIA more efficiently when taking a 

transfer sequence, by taking fewer steps. The simpler model of the RIA will also be more 

easily understandable by humans and analyzable by machines. 

To be able to partition a DOM into well-defined components, the crawler needs to have an 

algorithm for detecting components (called ‘component discovery algorithm’). Various 

algorithms can be suggested for component discovery. Static DOM analysis methods such 

as the widget-detection heuristics can be used. However, they cannot serve this purpose 
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well since the concept of components goes well beyond only widgets or menus, making the 

assumptions made in such algorithms too limiting. 

In order to devise a method that can be used more broadly, we propose an algorithm that 

builds its knowledge during the crawl through learning by observing RIA’s behavior as the 

crawler interacts with it. The algorithm is based on DOM changes before and after 

execution of each event. In this approach, the crawler starts crawling with no knowledge of 

components. Every time an event is executed, the subtree of the DOM that has 

appeared/disappeared/changed is considered as a component. Our knowledge of 

components increases with every event execution. This method comes from the 

observation that if part of the webpage reacts while other parts remain still, the reacting 

part is probably a distinct entity by itself. For example, in a RIA webmail interface, clicking 

on the title of an email opens up the body of the email while other portions of the UI such 

as menus and chat boxes remain intact. This makes the algorithm consider the subtree of 

the DOM that is the container of the email body as a component, and not to mix its states 

with other portions of the UI thereafter. We are not aware of any other diff-based 

approaches for discovering independent parts. 

The remainder of this chapter describes the RIA component-based model and the crawling 

algorithm in detail. 

 Model Elaboration 

In this section we present the way the RIA is modelled as a multi-state-machine and how 

the crawler keeps track of components in its data structure, followed by a discussion on 
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how independency of components is captured in our model in section 3.3.1. Then in 

section 3.3.2 we proceed with detailed description of component identifiers. 

The usual way of modelling a RIA is to represent it with the state-transition model described 

previously in section 2.2. In the state-transition model, each DOM in the RIA is represented 

as a state and each event is represented as a transition. In contrast, in our model we 

partition each DOM into components, each of which has its own component-state. 

Therefore, in our model a DOM corresponds to a set of component-states.. 

Since events are attached to XML nodes, each event resides in one of the component-states 

present in the DOM (its ‘owner component-state’)2. An event is represented as a transition 

that starts from its owner component-state. Since the execution of the event can affect 

multiple components, the corresponding transition can end in multiple component-states. 

Therefore, our model is a multi-state-machine. Figure 5 illustrates how an event execution 

is modelled in the other methods (a) versus our method (b). The destination component-

states of a transition correspond to component-states that were not present in the DOM, 

and appeared as a result of the execution of the event. 

                                                      

2 For events that are not attached to an XML-node on the DOM such as timer events, a special global always-

present component is defined as their owner component. 
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The multi-state-machine can be represented as a tuple � = (�, �,Σ, �) where A is the set 

of component-states, � is the set of initial component-states (those that are present in the 

DOM when the URL is loaded), Σ is the set of events, and � is a function � ×Σ → 2  that 

defines the set of valid transitions. Similar to the state-transition model (introduced in 

section 2.2), � is a partial function, since not all events are available on all component-

states. Unlike the state-transition model, we have a set of initial states, and executing an 

event can lead to any number of component-states. 

We can represent the multi-state-machine M as a graph	� = (�, �). Every state !� in M is 

represented by a vertex ��  in G. We can define a bijection �: � → � between component-

states in the multi-state-machine and vertices in the graph.	And we model each of the 

multi-transitions as multiple edges with the same label: 

�(!�, �) = # ⟺ ∀!� ∈ #,		��(!�), �(!�); �� ∈ � 

Where # ⊆ 2  is the set of component-states that the multi-transition �(!�, �) leads to. 

Figure 5. An event execution modelled with (a) DOM-states, and (b) component-states. 

Rectangles in (b) represent DOM-states and are not used in the actual model 
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The multi-state-machine is resilient to shuffling components around in a DOM, and does 

not store information about exact position of the component-states in a DOM. All the multi-

state-machine knows about the position of a component-state is the XPath described in 

section 3.3.2. Therefore, while our model is able to break a DOM into component-states 

(the procedure described in section 3.3.2), it is not possible to reconstruct an exact DOM 

using the multi-state-machine. While the resulting model of a RIA can be used to generate 

an execution trace to any content in the RIA, it cannot generate an execution trace to lead 

to an exact DOM.  

The crawler keeps information on each component-state of each component in a data 

structure. A simplified version of the data structure (called ‘stateDictionary’) is depicted in 

Figure 6. It is noteworthy that the definition of a component is not bound to a specific 

DOM. The same component can appear as subtree in different DOMs. Components are 

defined based on their location. Therefore, what makes two subtrees in different DOMs to 

be considered as the same component is their location (not their content). In order to 

represent the location of a component, we use XPath with some degree of freedom (more 

on this in section 3.3.2). Different content can appear at that location at different times. 

They are regarded as various component-states of that component, and are uniquely 

identified with IDs, as depicted in Figure 6. 



31 

In general, the RIA consists of a set of components, and each component has a set of 

possible component-states. On any given DOM, some components are present in the DOM 

(each in a given component-state) and some components might be absent. Using the 

‘Component Location’ column, the crawler can look for the components present in the 

DOM, then it can look into any component’s contents and compute an ID to match with the 

‘Component-State ID’ column in order to look up additional info on that component-state 

(transitions, unexecuted events, etc.), or discover that it is a new component-state. This 

procedure will be elaborated in section 3.3.2 once using component locations is discussed 

in detail. As for the component-state ID, we use the hash of the contents of the subtree, but 

depending on the crawler’s needs any state identifiers introduced in the related works can 

be used. 

Figure 6. The StateDictionary 
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 Constraints on Component Definitions 

So far we have mentioned that components should be defined in a way that they act 

‘independent’. Now we can define this constraint more precisely. By ‘independent’ we 

mean “the outcome of execution of an event only depends on the component-state of its 

owner component”. This means that the behaviour of the events in a component are 

independent of other present components in the DOM and their individual component-

states. As an example, the border around a widget that has minimize/close buttons is 

independent of the widget itself, since it minimizes or closes regardless of the widget that it 

is displaying. Therefore, the widget border and the widget itself can be considered separate 

independent components. On the other hand, the next/previous buttons around a picture 

frame are dependent on that picture frame, since their outcome depends on the picture 

currently being shown. So the next/previous buttons should be put in the same component 

as the picture frame. Note that event execution’s outcome can affect any number of 

components and this does not violate the constraint of independency3. The logic behind 

this definition of independency is that by examining an event only in the context of its 

owner component, the crawler learns the event’s execution outcome, and does not need to 

examine it regarding other components, which is the key to our state space reduction. 

It is the responsibility of the component discovery algorithm to define components in a way 

that satisfies this constraint in all of their component-states; otherwise the model will not 

                                                      

3 This is because dependency is about factors that affect the behaviour of an event. As long as the event’s 

behaviour only depends on its owner component-state, it can be modelled in a deterministic multi-state-

machine, regardless of what changes it makes to the DOM. 
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represent the RIA correctly and results in loss of coverage of the RIA. The component 

discovery algorithm must define components properly in such a way that they are coarse 

enough to satisfy our assumption of independency, yet they are fine-grained enough to 

reduce the state space effectively. 

Failure to define components coarse enough leads to the components not being 

independent. In such case, examining an event only in the context of its owner component 

is not enough to model the event’s behavior accurately, since the behavior depends on 

other component-states as well. This can lead to incomplete coverage of the RIA contents.  

On the other hand, failure to define components fine-grained enough leads to state space 

explosion. In the worst case, the whole DOM would be considered as one component, 

identified with XPath "/", and the set of component-states A would be the same as the set 

of DOM-states S. In such case the model essentially becomes equivalent to the DOM-state 

model in related works, resulting in the crawler behave as in the related works. Our 

proposed component discovery algorithm is described in detail in section 3.4. 

 Component Locations 

Component locations are identified by the XPath of the subtree’s root element. In order to 

find a particular component in the DOM, one should start from the document root and 

follow the component’s associated XPath. The element reached is the root of the 

component i.e. the component is the subtree under that element. It is notable that an 

XPath can potentially map to several nodes, therefore several instances of a component can 

be present in a DOM at the same time. 
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Since the XPath serves as an identifier for a component, we need the XPath to be consistent 

throughout the RIA i.e. it should be able to point to the intended subtree across different 

DOMs of the RIA. However, some attributes commonly used in XPath are too volatile (likely 

to change across DOMs) to be consistent throughout the RIA and might fail to be useful in 

locating components. Hence, we only use ‘id’ and ‘class’ attributes for each node in the 

XPath, and omit other predicates such as the position predicate. 

Here is how we build an XPath: to build an XPath for an element e 

• Take the path p from the root of the document to e. 

• For each HTML element in p, include the tag name of the element, the id attribute if 

it has one, and the class attribute if it has one. 

Figure 6 provides some examples in the ‘XPath’ column. 

There are two noteworthy properties that we would like to point out. First, there can be 

multiple instances of a component present in the DOM at the same time, each of which 

might or might not be in a different component-state than another. Figure 7 is an example 

of a shopping website. Individual list items in the product list are instances of a component 

Figure 7. Part of a shopping website’s DOM 
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‘product list item’. XPath also supports several instances of a component in a DOM at the 

same time, since querying an XPath can result multiple elements in the DOM. Back to the 

example in Figure 7, the product list items have the same XPath 

/html/body/div[@id=‘dvContent’]/div[@class=‘ListItem’] (mainly because we are 

excluding position predicate in XPath which is their main point of difference). But the 

selected item in the list yields a different XPath since it is usually assigned a different class 

or id attribute (/html/body/div[@id=‘dvContent’]/div[@class=‘ListItemSelected’]). 

Another noteworthy property is that components can be nested (e.g. a widget and its 

window frame that has minimize/close buttons can be considered different components), 

just as an XPath can point to a subtree under another XPath’s subtree. More examples can 

be found in Figure 4 that exhibits these two properties.  

Using component locations as guidelines, the crawler can partition the DOM in order to 

obtain set of current component-states; as described in the following pseudo-code. This 

procedure is used by the greedy strategy for finding our current position in the multi-state-

machine, and also by the pseudo-code in section 3.4 for determining destinations of a 

transition. 



36 

  

1. Procedure determine_set_of_current_states 

2. For each xpath in stateDictionary 

3. instances_of_component ← go through the xpath and give the subtree 

4. For each _instance in instances_of_component 

5. For each known sub-path under the current xpath 

6. go through the sub-path and prune the subtrees 

7. stateID ← read_contents_and_compute_stateID (instance) 

8. Add the stateID to set_of_current_states 

9. Return set_of_current_states 

 

Based on our discussion in this section, we can summarize the definition of components 

and component-states as follows: 

A component is identified by its XPath. We define a function &'!(ℎ such that for each node 

n in the DOM tree, &'!(ℎ(*) returns the XPath of n as defined above. If x is the XPath of a 

component, any node n such that &'!(ℎ(*) = & is the root of a subtree that holds an 

instance of that component. Since traversing an XPath in a DOM tree can lead to multiple 

nodes, there can be multiple instances of a component present in a DOM. A “component-

state” is the subtree T under node n, with all other component-states inside T pruned. We 

can formalize the definition of a component-state as follows: 

We define function ‘subtree’ such that �+,(-��(-) returns the subtree rooted by r, where r 

is a node in the DOM tree. Subtrees, just like graphs, have a set of nodes and a set of edges. 

We define a pruning operator – on subtrees as: 
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.� /	.0 = .1 

Such that .1 is a subtree with the same root as	.�, but with .0 pruned from it. Therefore: 

�21 = �2�\�20	, �21 � �2�\�20 

Where �24 is the set of nodes of the subtree	.4, and �24 is the set of edges of the 

subtree	.4. We can then define pruning a set of subtrees from a subtree: 

. / 5.�, .0, ⋯ , .47 � . / .� / .0 /⋯/ .4 

We say a node n is inside a subtree T when: 

*	8*	. ⟺ * ∈ �2 

Suppose X is the set of all XPaths in the stateDictionary (the ‘component-location’ column in 

Figure 6). We want to obtain the component-state b such that its root is node r. First we 

find all the nodes inside �+,(-���-	 that are roots of other components: 

� � 5*|&'!()�*	 ∈ : ∧ *	8*	�+,(-���-	 ∧ * < -7 

And then prune their subtrees from subtree of r. 

, � �+,(-���-	 / 5�+,(-���*	|* ∈ �7 

 Algorithm Elaboration 

In order to automatically explore a web application, a crawler needs to have an exploration 

strategy that tells it which events to execute, how to analyze the event execution 

outcomes, and when to stop. The method proposed in this paper only relates to analyzing 
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event execution outcome, in order to build the model that was described in detail in 

section 3.3. So theoretically it can be used by any exploration strategy. The exploration 

strategy can then benefit from the model that is being built by our method. As mentioned 

earlier, we used the greedy strategy as the exploration strategy in our experimental 

implementation. 

We now proceed to describe how the crawler populates the stateDictionary during the 

crawl (the component discovery algorithm). Generally, using the ‘Component Location’ list 

in the stateDictionary, the crawler can discover new component-states during the crawl and 

populate the ‘Component-State ID’ lists. Our proposed component discovery algorithm, 

populates the ‘Component Location’ list itself incrementally during the crawl as it observes 

the behavior of the RIA (as well as the ‘Component-State ID’ lists). If a pre-loaded 

‘Component Location’ list is given, the crawler can leverage that as a fixed component 

locations list. However, we do not assume such a list exists at the beginning of the crawl, 

and the algorithm has the ability to discover Component Locations itself. 

The algorithm is based on comparing the DOM tree snapshots before and after each event 

execution. Every time an event is executed by the crawler, the subtree of the DOM that has 

changed as a result of the event execution is considered a component. 

The way we compare the DOM trees to obtain the changed subtree is defined as below:  

Suppose the DOM-tree before the event execution is Tbefore and the DOM tree after the 

event execution is Tafter. We traverse Tbefore using breadth-first-search (or any other 

traversal algorithm). For each node x in Tbefore, we compute the path from root to x, and 
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find the node in Tafter that has the same path. If x and its corresponding node in Tafter are 

different, or have different number of children, x is considered as root of a component, its 

XPath is added to the stateDictionary if not already existing, and the search is discontinoued 

in subtree of x. If several such nodes exist in Tafter, their deepest common ancestor is used 

as the root of the component. 

From that point on, whenever the crawler encounters a new DOM, it detaches the contents 

of the component and considers it as a component-state; One of many component-states 

present in the DOM. Initially, the stateDictionary contains only one component with the 

XPath of “/”. More components are discovered and added to the stateDictionary as the 

crawling proceeds. The algorithm can be summarized as the pseudo-code below: 
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1. Procedure ComponentBasedCrawl 

2. For (as long as crawling goes) 

3. event ← select next event to be executed based on the exploration strategy 

4. execute (event) 

5. delta ← diff (dom_before , dom_after)  

6. xpath ← get_xpath (delta) 

7. If (stateDictionary does not contain xpath) 

8. add xpath to stateDictionary 

9. resulting_states ← delta.determine_set_of_current_states() 

10. For each state in resulting_states 

11. If (stateDictionary does not contain state) 

12. add state to stateDictionary 

13. event.destinations ← resulting_states 

14. Return stateDictionary 

 

In the pseudo-code above, in each iteration the crawler executes an event based on its 

exploration strategy (in our case, greedy) in lines 2-3. Then in line 4 it finds the changed 

subtree of the DOM and stores it in variable delta. Then in lines 5-8 it gets XPath of delta 

and adds it to the stateDictionary if not already there. This is to discover new component 

definitions during the crawl (Here we are updating the ‘Component Location’ column). Then 

in line 9 it runs the determine_set_of_current_states procedure that we introduced in 

section 3.3.2 on the delta. The procedure returns a set of component-states, which are 

added to the list of their corresponding component’s states in stateDictionary, if not 

already there (lines 10-12). This is to populate information in stateDictionary on what 
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component-states can each component have (Here we are updating the ‘Component-State 

ID’ column). Finally, in line 13 the set of resulting component-states is associated with the 

last executed event. This means that when modelling the RIA as a multi-state-machine, we 

model this event execution as a transition that ends in the resulting component-states (see 

Figure 5). The crawler then proceeds to pick another event based on its exploration strategy 

and execute it. 

 Violations 

Our method makes the assumption that components are independent, and we discover 

new components based on diff between DOMs. Note that this component discovery 

algorithm has no direct correspondence to the assumption that components must be 

independent. Therefore there is no guarantee that the components defined by this 

algorithm indeed satisfy the assumption of independence. As a result, this assumption 

might be violated, in which case the behaviour of an event in a component may not be 

totally independent from other components in the DOM. Whenever the outcome of an 

event execution does not adhere to our deterministic model of the RIA, we say that the 

crawler has encountered a “violation”. 

Occurrence of violations may or may not negatively affect the coverage. It can be the case 

that some components are wrongly assumed independent, and thus a certain combination 

of their events that could lead to new content is never explored. In this case, the crawler as 

missed some content. 
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Ideally, dependent components should be detected and merged. Merging two components 

into one causes the crawling method to explore all component-states of the new 

component (which consists of all combinations of component-states of the merged 

components), therefore reaching the missed content. However, this idea requires a way to 

detect dependent components. One solution would be that whenever the crawler 

encounters a violation, it should merge the component with another component based on 

heuristics. The heuristics guess which components might have been dependent that caused 

the violation.  

However, dependent components are not the only source of violations. Violations can also 

occur if any of the general assumptions in section 2.2.1 do not hold. In such cases, merging 

components in the abovementioned method will not fix the problem, and violations 

continue to happen after merge. As a result, the method wrongly keeps merging 

components as it encounters violations, until all components are merged into one, in which 

case component-based crawling reverts to normal DOM-based crawling. Therefore, not 

only the abovementioned solution may not help in some cases, but also it may defeat the 

purpose of component-based crawling. 

We acknowledge that this issue requires further investigation. Detecting and merging 

dependent components are costly operations and impose high overhead on the crawler. In 

our current implementation, occurrences of violations are simply ignored. This 

implementation has achieved full coverage on all of our experimental test cases, and in 

none of them we encountered a situation where violations cause loss of coverage. In a 

future work, we may address the problem of encountering violations. 
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 Conclusion 

In this chapter we described the method of component-based crawling in detail. Using a 

multi-state-machine, it is possible to model a RIA as a set of components with individual 

component-states, rather than DOM-states. Modelling a RIA with components captures 

interactions of events at a finer level, and prevents the crawler from exploring unnecessary 

combinations. We proposed an algorithms for efficient crawling of RIAs based on this 

model, starting with no knowledge of components in a RIA, discovering components during 

the crawl and applying the knowledge as more components are discovered. 
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4. Experimental Results 

In this section, we compare the performance of our component-based crawling method to 

other methods known to be the most efficient algorithms for DOM-based crawling of RIAs 

with complete coverage. 

The following sections are organized as follows: In section 4.1 we describe in detail what 

experiments are conducted, what methods are compared and on what basis they are 

compared, and how the results are produced and verified. In section 4.2 we present the 

subject RIAs that are used as test cases in the experiments. Then in section 4.3 we provide 

the experimental results on comparing the performance of the methods on all our test 

cases. In addition, on some of the test cases we are able to increase and decrease the size 

of the RIA by controlling the items shown. On these test cases, we perform experiments in 

section 4.4 to compare how different methods scale as the size of the RIA enlarges. Finally, 

we summarize our findings from the experimental results in section 4.5.  

 Experimental Setup 

 Candidate Methods 

Based on previous studies on the performance of AJAX crawling algorithms [35], [12], the 

greedy exploration [35] method and the model-based crawling methods consistently 

outperform standard DFS and BFS methods. Experimental studies performed in [12] and 

[42] show that model-based strategies tend to show a better performance than the greedy 

exploration strategy, and that the probability strategy [42] tends to be the most efficient 
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model-based crawling strategy. Therefore, we compare the performance of our 

component-based method against greedy exploration and probability model as two of the 

most efficient DOM-based crawling algorithms with complete coverage. As suggested by 

[42], the probability strategy is configured with initial probability set to 0.75. 

As hinted in section 3.4, our implementation of component-based crawling uses the greedy 

algorithm as its exploration strategy. Therefore, comparing the experimental results of our 

component-based greedy method and the standard DOM-based greedy method enables 

the reader to observe the direct impact of component-based crawling on performance, 

without any change in the exploration strategy. 

 Variables to Measure 

We compare the performance of the candidate methods form various different aspects. 

These aspects are discussed in this section: 

Cost of Finishing Crawl 

The first and most obvious performance determinant is the cost of finishing the crawl. We 

compare the time and exploration cost that each method takes for performing the full 

crawling procedure. (The cost metrics are elaborated in the next section). The less amount 

of time/cost it takes a method to finish crawling, the more usable it is; considering the fact 

that all methods provide the same content coverage (see section 4.1.5). 

Model Size 

As explained in [14], [13], the size of the generated model has a great impact on usability of 

the crawling results. A larger model increases the cost of analyzing or testing the model, 
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and is harder to maintain. Therefore, the smaller the model, the more usable and 

maintainable it is. For this reason, we also use the size of the model generated by the 

crawler as another performance representative for comparing different methods. 

Authors of [13] use the number of transitions in the model as an indicator of its size. We 

provide both the number of states and the number of transitions in our results, and use the 

number of transitions as the indicator for size. 

 Cost Metrics 

To ensure credibility, the different crawling methods are compared using 2 different cost 

metrics. These metrics are explained below: 

1- Exploration Cost: Firstly, we use exploration cost (weighted sum of events and 

resets executed, introduced in section 2.2) as a performance metric. In order to 

calculate the exploration cost, for each of the test cases we have measured the 

average event execution time (��	=>? and average time to perform a reset (�-	=>?. 

For each RIA, (��	=>? is calculated by executing randomly selected events, and 

(�-	=>? is calculated by loading the RIAs URL multiple times, and measuring the 

average times for each respectively. Then, the “reset weight” is then defined as 

@A �
(�-	=>?

(��	=>?
 

. Then, with the simplifying assumption that all events have a weight of 1, we 

calculate the exploration cost as  

*B C *A � @A 
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where *B is the number of events executed and *A is the number of resets 

performed. 

2- Time: Exploration cost provides a better metric than simply measuring the time that 

it takes to perform crawling, since time measurement is affected by factors external 

to the crawling method. Examples of these factors are communication delays and 

external tasks run by the OS. However, in order to ensure that the processing 

overhead of component-based crawling does not affect its efficiency negatively; we 

also compare the methods based on time measurements. 

 Implementation 

All the presented algorithms are implemented in a prototype of IBM® Security AppScan® 

Enterprise (ASE) [17], which is the same platform used in [37], [12], [38]. ASE uses web 

Figure 8. Architecture of our crawler (as appeared in [42], with slight modifications) 
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crawling for the purpose of vulnerability detection and security testing on web applications. 

Current versions of ASE do not rely on external web browsers for providing the client side 

environment of the application, and instead use an embedded implementation of a 

browser. The embedded browser is capable of navigating to webpages, identifying 

elements with registered events. Our implementations of RIA crawling algorithms make use 

of ASE’s JavaScript engine and event identification mechanism in order to execute. 

For detecting equivalent DOMs in the DOM-based methods, ASE’s default DOM equivalency 

function (outlined in [41]) is used. For detecting equivalent states in component-based 

crawling, the same function is used, applied to component-states instead of DOMs. 

All subjects RIAs are deployed on a local server for the purpose of experiments. Targeting 

RIAs online on public domains is not suitable for running experiments, since crawlers should 

practice politeness [44] which is not to overwhelm the server with too many requests that 

may disrupt the normal operation of the server to serve its users. Otherwise their requests 

may be identified as a Denial of Service (DoS) attack and be dropped. Moreover, publicly 

available RIAs may change over time and this prevents the reproducibility of the 

experiments. 

 Coverage Verification 

On all test cases, content coverage of the component-based crawling method is compared 

against the other methods and verified for equality. In order to do so, a database is 

associated with each crawling session. During the crawling session, after each event 

execution the crawler adds every line of the HTML representation of the DOM to the 
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database. The database for each session therefore holds the content covered in that 

session. When we crawl a RIA with different methods, the databases are checked for 

equality to ensure none of the methods missed any content that the others covered. All 

methods are verified to have had equal coverage in all our experiments. This ensures that 

on our test cases, although component-based crawling does not visit all of the possible 

DOM-states, it covers all the content in the RIA. It only misses DOMs that contain no new 

data that the crawler had not seen already. 

 Test Cases 

In this section we introduce the RIAs that we use as test cases in our experimental studies. 

Two of the websites are created and maintained by our own research group as basic test 

cases. The rest of examples are instances of real world RIAs deployed on our local sever for 

the purpose of the experiments. 

Since some of these test cases are too complex for complete DOM-based crawling, previous 

studies that use these test cases [37], [12], [42] use a modified version of some of them. 

These studies exclude some of the data in the original RIA in order to reduce the state space 

of the RIA. Limited versions of these RIAs were used since crawling the RIA with the original 

set of data was impossible due to state space explosion. Component-based crawling, 

however, is able to crawl the full version of the RIAs. On each of the test cases, we explain 

the modifications performed, if any. While we use the limited version of the websites in 

section 4.3 to make comparison with DOM-based methods possible, we also run 
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component-based crawling on the full version of the RIAs as part of the scalability 

experiments in section 4.4.  
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TestRIA 

TestRIA, shown in Figure 9, is an example RIA maintained by our research group. It mimics a 

fully Ajax-based single URL E-commerce website with a three-column layout and a top 

menu. Users can select different menu items on the home page and the page contents 

fetched via Ajax interactively. Users can navigate with additional menus that appear on the 

left column, navigate through item catalogs, or see more details about them. Some sections 

include next/previous style navigation functionality. 

Figure 9. TestRIA 
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Altoro Mutual 

Altoro Mutual is a demo website for a fictional bank, originally maintained by the by the 

IBM® AppScan® team as a mock website for security testing. The original website [45] is a 

traditional web application featuring hyperlinks for navigation. We have created an 

Ajaxified version of the website that uses AJAX calls instead of hyperlinks to fetch content. 

The website has no complex functionality and provides content via menu items that use 

AJAX. 

  

Figure 10. A screenshot of Altoro Mutual 
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ClipMarks 

CilpMarks [46] is a good example of social bookmarking websites. This AJAX-based RIA is for 

sharing parts of any webpage one likes with other users. The main page lists shared items in 

a list on the left side. Clicking on each item loads the content into the right hand side pane. 

The right hand side pane also provides functionality for sharing, voting up, following, etc. 

Each  item on the left side list also has a ‘pops’ button, clicking on which displays a list of 

users voted for that item in a popup dialog. 

The instance of the RIA used in the experiments contains 3 items (clips) since including 

more clips required excessive amount of time for experimenting with DOM-based methods. 

Experiment with different number of items is also conducted in section 4.4. 

Figure 11. ClipMarks 
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Periodic Table 

This RIA provides a good example of a large and dense graph. The RIA [47] exhibits the 

periodic table that contains all the chemical elements in a table. Clicking on a chemical 

element displays detailed information about the chemical element in a window, while other 

chemical elements are still accessible. There is also an anchor at the top of each page 

(Toggle Details) which switches the style of the current page between two alternative 

styles. 

  

Figure 12. Periodic Table RIA 
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ElFinder 

ElFinder [48] is an open source AJAX-based RIA for file browsing via a web Interface. The 

user can browse the folders by using the tree view on the left pane, selecting or double 

clicking files and folders on in the icon view area, and using the ‘home’ and ‘up’ buttons on 

the toolbar. 

 

Figure 13. A snapshot of our simplified version of elFinder 

In our experiments, we use a simplified version of the RIA, with some of the original 

functionalities that made changes to the server state of the RIA (such as rename and edit) 

disabled. The toolbar on the top has ‘refresh’, ‘home’, ‘up’, ‘view’, and ‘help’ buttons. The 

‘view’ button toggles between icon view and details view in the main browsing area. The 

help button renders a floating help window with 3 tabs. In our experiments, we point the 
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browser to a directory structure with 4 folders, 2 of which have a file inside and the other 2 

have 3 files inside. 

Bebop 

Bebop is an open source AJAX-based interface to browse a list of publication references. 

The top portion of the application contains a set of events that filters the displayed 

references according to different categories, and at the bottom the references are listed. 

Each of the listed references can be in toggled between 3 different states on how much 

information is displayed. 

 

Figure 14. Bebop 
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Bebop is a good example of a RIA that can show a very large number of different DOMs 

with a very limited set of data, causing state space explosion. The original version of the RIA 

has 28 reference items. In our experiments, however, we use instances of Bebop with only 

3 reference items loaded, to make experiments practically possible. Experiments with 

different number of items (including the original 28) is also conducted in section 4.4.  

 Comparison on subject RIAs 

In this section we present the experimental results on the efficiency in covering complete 

content of our test cases. We compare the cost that it takes for the crawler to finish 

crawling of the RIA, measured in both exploration cost and time. Then in section 4.3.3 we 

compare the resulting models based on size. 

 Exploration Cost 

Figure 15 plots the total crawling cost incurred by each of the candidate methods on each 

test case.  
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Figure 15. Comparison of exploration costs of finishing crawl for different methods 

And the details are presented in the following table: 

  TestRIA 
Altoro 

Mutual 
ClipMarks 

Periodic 

Table 
elFinder Bebop 

Reset Weight 2 2 18 8 10 2 

Greedy 1,003 2,576 12,398 31,814 30,833 72,290 

Probability 974 2,520 12,562 31,456 32,014 71,041 

Component-

Based 
142 308 443 3,856 2,733 293 

Table1. Exploration costs of finishing crawl for different methods 

As seen in the figure and the table, the component-based crawling method consistently 

outperforms probability method and the greedy method by far. The difference between 

greedy and probability methods is negligible compared the difference of component-based 

crawling with them. As we move from simpler test cases (TestRIA and Altoro Mutual) to 

bigger test cases such as Periodic Table, the difference also becomes even larger. 
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The difference is more dramatic in RIAs that have a complex behaviour. The best example 

among our test cases is Bebop, which contains very few data items shown on the page, but 

can sort and filter and expand/collapse those items in different manners. Even in an 

instance of the RIA with only 3 items, component-based crawling is 200 times more 

efficient than the other methods. This difference in performance quickly gets even bigger in 

an instance of the RIA with more items (This is studied further in the scalability tests 

section). Results on a Bebop instance with more items would not visually fit in the chart, 

therefore we used an instance with only 3 items in this section. 

While component-based crawling still outperforms other methods in crawling elFinder, the 

performance gain is not as much as the other complex RIAs. The reason is that elFinder is 

file browser in which the status of the main icon view effects the behaviour of various parts 

of the UI such as the status bar and the toolbar. Therefore, almost the whole RIA is 

considered as a component by our method, and only few functionalities of the RIA are 

considered separate independent components.  

  Time 

Since component-based crawling requires a fair amount of computation at each step, we 

also measured time in similar experiments to ensure this processing overhead does not 

degrade the overall performance. 



60 

Overall Crawling Time 

 

Figure 16. Comparison of time of finishing crawl for different methods 

 

 
RIA Altoro ClipMarks 

Periodic 

Table 
elFinder Bebop 

Greedy 0:00:18 0:00:34 0:03:38 1:13:08 0:51:22 1:25:11 

Probability 0:00:11 0:00:20 0:02:50 1:09:42  0:49:00 1:17:32 

Component-Based 0:00:06 0:00:04 0:00:13 0:01:21 0:08:21 0:00:29 

Table 2. Time of finishing crawl for different methods 

  

As can be seen in the above figures and tables, the performance gain of the component-

based crawling method compared to the other methods measured by time is similar to 

when measured by exploration cost. These results verify the fact that component-based 

crawling incurs negligible computation overhead. 

The most computationally expensive operation in our crawler implementation is the 

function to calculate state-ids [41], which incurs reducing and normalizing the DOM and 

computing hash. DOM-based crawling methods invoke this function on the entire DOM 
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once in each step to calculate the state-id, whereas component-based crawling invokes this 

function many times (once for each present component-state) per step. However, since 

these invocations do not engage with the entire DOM and only work with small pieces of 

the DOM, they are performed much faster, hence making component-based crawling’s 

several short invocations comparable to other methods’ one lengthy invocation. 

 Model Size 

In this section we compare the size of the models resulting from component-based crawling 

and DOM-based crawling methods. The resulting model does not depend on the 

exploration strategy used. Therefore, different exploration strategies compared in previous 

section produce the same model from a RIA when crawling is finished completely. However, 

when using component-based crawling we produce a different model from the same RIA 

since it is now modelled at component level rather than DOM level. We previously provided 

detailed description of the model in section 3.3. It is worth noting that although the models 

differ, they cover the same functionality and content from the website. 
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The following tables provide the number of states and number of transitions in the models 

obtained by DOM-based crawling and component-based crawling on each of the test cases.  

TestRIA Altoro Mutual 

 
States Transitions 

 
States Transitions 

Dom-Based 39 305 Dom-Based 45 1,210 

Component-

Based 
67 191 

Component-

Based 
87 536 

 

Periodic Table ClipMarks 

 
States Transitions 

 
States Transitions 

Dom-Based 240 29,034 Dom-Based 129 10,580 

Component-

Based 
365 2,019 

Component-

Based 
31 377 

 elFinder  Bebop (3 items) 

 States Transitions  States Transitions 

Dom-Based 640 16,368 Dom-Based 285 29,284 

Component-

Based 
 152 3,239  

Component-

Based 
119 774 

Bebop (5 items) 

   
 

States Transitions 

   Dom-Based 1,800 145,811 

   
Component-

Based 
141 1,134 

Table 3. Size of the obtained models using DOM-based crawling and Component-based crawling 

 

As suggested in [13], we take the number of transitions as a metric for size of the model, 

since fewer number of transitions means fewer number of execution traces to be tested, 

which reduces the cost of testing (or any other analysis on) the model. 
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The results show that although modelling at component level can result in more states in 

some cases, it consistently provides substantially fewer transitions in all test cases4. Like in 

the previous sections, the difference becomes more significant as we move to larger test 

cases.  

The models are verified manually for correctness with the help of a Model Visualizer tool 

developed in our team. The Model Visualizer can display the model, show information 

about any transition or state that is selected in the UI, and playback a desired event 

execution trace in a browser window for easy verification. 

Below we present visual comparison of the model generated by each method on three of 

the test cases as an example. Visual comparison of more complex test cases are not 

included as they present large-scale or dense graphs that are not clearly understandable 

when printed. 

  

                                                      

4 Notice that for component-based crawling, in some cases the number of transitions in the model in Table 3 is 

actually more than the number of events executed by the crawler (Table1). This is due to the fact that in 

component-based crawling, unlike DOM-based crawling, an event execution may be modelled with several 

transitions, each pertaining to one of the destination component-states that emerge as a result of the event’s 

execution. 
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Figure 18. The TestRIA website modelled at DOM level (left) and component level (right). As seen in the 

figures, comopnent-based crawling results in more number of states, but a cleaner model with fewer 

transitions. For example, menu items are modelled as transitions from every state in the DOM level model, 

while they reside in their own component in the component-level model. 

Figure 17. The Altoro Mutual website modelled at DOM level (left) and component level (right) 
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 Scalability Tests 

In some of our test cases, we are able to control the size of the RIA by changing the number 

of data items in the source code of the RIA. In order to test the scalability of the 

component-based versus DOM-based methods, we conducted additional experiments on 

these test cases. In this section, we observe the scalability of the crawling methods by 

experimenting with different instances of the same RIA with different sizes. 

For visual clarity of the charts, we only include the results for the greedy method and our 

component-based method in the charts. The results for the probability method are omitted 

in these charts since they would be visually indistinguishable from the results of the greedy 

method, as these two methods showcase near identical scaling behaviour. In the tables in 

this section, “N/A” refers to “not available”, were obtaining result for DOM-based crawling 

was impractical due to excessive running times. 

Figure 19. The ClipMarks website modelled at DOM level (left) and at component level (right). As we move to 

more complex test cases, the component level model looks more differently from the DOM level model. This 

instance of ClipMarks has 3 items. As seen in the figure, this resulted in 3 identical branches In the DOM level 

model. 
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ClipMarks 

In ClipMarks, the initial page of the RIA shows a list of items that users have shared. 

Therefore by tempering the number of items in our local copy of the RIA, we can observe 

how a crawling algorithm scales as we add list items incrementally. Figure 20 shows the 

time cost of crawling different versions of the website using DOM-based and component-

based greedy crawling, from 1 item to the original 40 items.  

 

Figure 20. Time of crawling ClipMarks as the number of items in the website increase 

The numbers are given below in Table4. 

1 2 3 4 5 10 15 20 25 30 40 

Component-Based 0:00:06 0:00:11 0:00:16 0:00:21 0:00:26 0:00:53 0:01:39 0:02:58 0:04:40 0:06:17 0:09:07 

Greedy 0:00:13 0:00:54 0:03:32 0:31:28 2:37:02 N/A N/A N/A N/A N/A N/A 

Probability 0:00:11 0:00:47 0:02:50 0:25:30 2:52:56 N/A N/A N/A N/A N/A N/A 

Table4. Time of crawling ClipMarks RIA with various numbers of items 

As the results show, we can verify that component-based crawling scales nearly linearly 

where the DOM-based greedy method grows exponentially. This phenomenon is clearly 

visible in the figure. With only 5 items enabled, the running time for DOM-based methods 
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reaches higher than 2 hours and a half, making further experiments practically infeasible. 

Component-based crawling, however, finishes crawling of the full version of the RIA with all 

40 items enabled in less than 10 minutes. 

Bebop 

In Bebop also we can change the number of publications that the RIA presents. Results on 

crawling with different number of publications (including the original version with 28 

publications) are shown in the figure below: 

And here are the numbers: 

 
1 2 3 4 5 10 20 28 

Component-Based 0:00:19 0:00:23 0:00:25 0:00:29 0:00:31 0:02:50 0:06:21 0:11:54 

Greedy 0:01:59 0:06:30 0:25:04 1:25:11 N/A N/A N/A N/A 

Table 5.Time of crawling Bebop RIA with various numbers of items 
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Figure 21. Time of crawling Bebop RIA as the number of items increases 
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As with the previous example, in this example also we see that component-based crawling 

becomes more and more advantageous as the number of items in the RIA increases and the 

number of DOM-states grows exponentially. Once again, the complete RIA is only crawlable 

using component-based crawling. 

ElFinder 

We can perform a similar experiment on elFinder by changing the number of files and 

folders that exist in the directory structure that elFinder browses. In this set of experiments, 

we load that directory with a set of folders (no files in the directory root). In each folder 

(depth 1) there are files. One out of each 3 folders has 3 files inside, the rest of the folders 

have one file inside. In Figure 22, the x axis shows the total number of files (excluding 

folders) that exist under the directory. 

 

Figure 22. Time of crawling elFinder as the number of files in the RIA browser increases 
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The numbers are presented in the following table: 

 2 4 8 16 40 100 

Component-Based 0:01:11 0:02:57 0:04:21 0:08:18 0:18:52 0:59:51 

Greedy 0:07:14 0:15:30 0:43:20 3:08:00 N/A N/A 

Table 6. Time of crawling elFinder RIA with various numbers of files to browse 

As mentioned earlier, our algorithm considers most part of the elFinder as one component. 

As we can see in the results, component-based crawling still scales better than DOM-based 

greedy, although to a lesser extent compared to the previous 2 test cases.  

 Summary 

In summary, component-based crawling shows a significantly better efficiency than DOM-

based crawling methods, consistently among all the test cases. In fact, larger test cases 

better exhibit the performance advantage of component-based crawling. Scalability 

experiments show an almost-linear scalability for component-based crawling where DOM-

based crawling becomes exponentially inefficient. Results based on running time are in line 

with the results based on exploration complexity, which confirms that the processing 

overhead of our component-based crawling algorithm is negligible. 

The complexity of the model derived from the RIA is also significantly lower with 

component-based crawling, while covering the same functionality and content. This results 

in better analyzability and maintainability of the generated model compared to other 

methods.  
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5. Similarity Detection 

The data form the crawler is usually fed to a ‘consuming system’ that analyses the data (e.g. 

runs security test) and produces end-results. But not all data might have equal value to the 

consuming system for producing end-results. In RIAs where a large amount of data is 

present, the crawler may spend valuable time exploring in a pool of unimportant data, 

while there is valuable data to be discovered elsewhere in the RIA. Therefore, there is a 

challenge for an automatic crawler to direct the crawl towards finding the more valuable 

data earlier during the crawl. 

In order to address this problem, we aim to detect ‘similar events’ (events that tend to 

produce similar data that do not contribute as much to the end-results), and give them less 

priority. In this chapter, we first explain the problem in detail and then present our 

similarity detection solution. Finally, we provide a section for the experimental results to 

evaluate the effectiveness of the solution. 

 Problem Statement 

Complex websites present a challenge to automatic crawlers in finding useful results in a 

timely fashion. Consider websites such as shopping, news, or social websites. These 

websites contain an enormous amount of data organized in database. They can present 

very large volume of content through structurally similar UI. Crawling such large RIAs can 

take a very long time, even with techniques such as component-based crawling. In such 
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cases, we can usually see a pattern of having large arrays of similar content, and it is in the 

interest of the crawler to limit time spent on each of them, and ‘diversify’ the crawl. 

For example, Facebook is a large RIA, in which a typical page contains numerous posts, and 

each post has a ‘like’ button, names of people, etc. Clicking on the ‘likes’ link of each post in 

Facebook brings up a popup window with a list of people who liked the post, and hovering 

the mouse over each person shows a popup balloon with some details about the profile. 

Going through all like lists and all profile popups is a very time consuming task that may not 

be useful to the crawler. A crawler that does structure analysis or security scan, for 

example, is more interested in the structural aspects of the RIA rather than the text 

content. Therefore visiting one instance of a likes list or a popup balloon is enough and the 

crawler needs to direct the crawl towards discovering other structures in the RIA. Going 

Figure 23. Examples of some similar events on Facebook.com 
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through every item in the list only leads to redundant information in this case (if a security 

hole exists in a profile popup, it probably exists in all profile popups. Instead of reporting 

instances of the same problem repeatedly, it is better to find other problems in the 

application first). Other common examples include online stores, news, blogs, and emails to 

name a few. These websites typically contain thousands of items, each of which displays 

information on a single product, a single blog, a single news entry, etc.  

In such environments, the crawler should be able to find the most diverse set of data as 

early as possible during the crawl, and leave the rest of uninteresting ‘similar’ data for later. 

This can prove helpful for various reasons. 

Firstly, it might be unreasonable to assume that the results of crawling are only consumed 

after the crawl has finished. Crawlers such as security scanners usually pipeline the output 

to the consuming system as the crawling proceeds, to report the errors on-the-fly. 

Therefore, finding a broader set of results earlier can be useful for the user. Also, security 

scanners may aim for finding structure over content, and test for security only structurally 

different states. Therefore, having similarity will prevent them from clicking on all the ‘likes’ 

on Facebook. 

Secondly, the user might even cap the crawling time, so the crawl might not proceed to the 

end. In the case of a content indexing crawler, for example, when the user stops the scan or 

views the results midway due to excessive crawling time, he/she would expect the set of 

results to be incomplete, but still representative of different aspects of the RIA. Diversifying 

the crawl in this case helps obtaining a broader birds-eye view of the RIA earlier, much like 
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a human-guided crawl would do, rather than getting stuck in a corner of the RIA. (Without 

diversification we might get details on every single entry in the help menu and nothing from 

the rest of the RIA). 

Therefore, the order in which crawler discovers content matters, and diversifying the crawl 

can prove helpful during a long-running crawling task. Diversifying the crawl can be 

achieved through detecting similar content, and directing the crawler around them. 

We propose to obtain this feature in RIA crawlers by detecting events that perform similar 

tasks. We call these events “similar events”. By detecting similar events prior to executing 

them, a web crawler can decide to skip over them or postpone their execution. Comparing 

events or predicting their outcome, however, is not a trivial task. Unlike URLs, the 

destination of an event cannot be known unless executed. The arguments of a JavaScript 

function call are not the only information passed to the function, and two events with the 

same function call can yield different results. Therefore, we use heuristics to observe and 

anticipate the behaviour of events for the purpose of diversifying the crawl.  

Note that Similarity Detection is independent from the other concepts in this thesis, and 

can be used with either component-based or DOM-based crawling. Our proposed 

technique is also independent from the exploration strategy used (It only filters out similar 

events). In the next two sections we present our method to detect and deal with similarity. 
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 Solution Overview 

Upon visiting a page, events on that page are grouped into “similarity classes”. If an event 

does not fit in any of the existing classes, a new similarity class is introduced for that event. 

Some events discovered later in the crawl might join the class as well. Deciding the 

similarity class of an event must not require execution of that event. Therefore, similarity 

class of an event is decided using only factors that can be observed statically from the DOM. 

Our heuristic method classifies events based on their code and their surrounding context in 

the DOM. It will be described in section 5.3. Note that the concept of a similarity class is not 

related to the concept of components or DOMs, and is not restricted to either. A similarity 

class can span different states of the RIA, so two events from different DOMs/components 

can be in the same similarity class. 

After events on a DOM are categorized into similarity classes, the crawler proceeds to 

execute a few events from each class. This “trial” is done to ensure that events in the same 

class indeed yield similar outcomes, and avoid any faulty categorization by the heuristic. A 

good example of such a case would be menu items on many RIAs that are implemented 

using similar or even identical function calls. Since their code and also their surrounding 

context is similar, the heuristic might put them in the same similarity class. Executing two of 

them, however, reveals that they point to significantly different portions of the RIA. 

Every class of events has a label of ‘similar’, ‘dissimilar’, or ‘unknown’. All classes are 

labelled ‘unknown’ upon creation. While performing the trials, a class is labelled as 

‘dissimilar’ if at least two events inside that class have dissimilar behaviour. A class is 
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labelled ‘similar’ if its events show similar behaviour after certain number of trials. The 

number of trials performed for each class (i.e. number of events executed for each class 

prior to labelling it ‘similar’) is an adjustable parameter. We use the minimum number ‘2’ in 

our experiments as the number of adequate trials. Trials are only needed for ‘unknown’ 

classes and need not to continue on a class it is labelled ‘similar’ or ‘dissimilar’. 

It is worth noting that performing the trials can be postponed in order to not interfere with 

the normal exploration of the site. In fact, the crawler proceeds to execute events normally 

based on its exploration strategy. The event classification mechanism then observes the 

outcome of each event as they are executed, and adds the knowledge to its trial knowledge 

base. Therefore, classifying events, performing trials and labelling the classes are all 

transparent from the exploration strategy and have no impact on the exploration cost. 

We formalize similarity classes as follows: 

In this chapter, when we refer to an event e, it refers to an instance of the event in a 

particular context. Therefore, the set of event instances is different from Σ. We refer to the 

set of event instances as Σ′. For simplicity of notations in this chapter, we refer to the event 

instance simply as ‘event’, and refer to the context of the event as E��	. 

Function f is a heuristic function that, given an event, computes an ID for the event based 

on their code and their surrounding context in the DOM. If the computed ID of two events 

match, they belong to the same similarity class: 

	��, �0 ∈ F ⟺ G(��) = G(�0) 
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Where �� and �0 are events, and C is a similarity class. In other words, equality between the 

computed ID of events is used as an equivalency function to partition the set of all events Σ′ 

into several similarity classes. 

We define another function g that after a trial is made on an event, computes a separate ID 

based on the execution outcome of the event. The result of the function on an event is 

initially undefined until a trial is made. Therefore, initially 

∀B∈ Σ′.		H(�) = I/� 

And all the similarity classes are labelled ‘unknown’. As we perform trials, the result of 

function g is discovered and more event classes are labelled as ‘similar’ or ‘dissimilar’. At 

any given time, the following rules hold: 

K!,�K�F	 � �8L8K!-	⟺	M∀BN,BO∈ F.		H(��) = H(�0)P ∧ (|5� ∈ F|H(E)	8�	Q�G8*�Q7| > ,) 

K!,�K(F) = Q8��8L8K!-	 ⟺ ∃BN,BO∈ F.		H(��) ≠ H(�0) 

K!,�K(F) = +*T*U@*	 ⟺ K!,�K(F) ≠ �8L8K!- ∧ K!,�K(F) ≠ Q8��8L8K!-  

Where b is the number of adequate trials. Functions f and g and their return values will be 

elaborated in section 5.3. As stated before, a similarity class C is independent from 

component-states ! ∈ � and DOM-states	� ∈ �. Events in a similarity class can span 

multiple component-states/DOM-states. 

The overall algorithm is summarized in the following pseudo-code: 
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1. number_of_adequate_trials = 2 // user-adjustable variable 

2. for (as long as crawling goes) 

3.  event ← select next event to be executed based on the exploration strategy 

4.  execute (event) 

5.  similarity_class ← get corresponding similarity class of (event) 

6.  if (similarity_class does not exist) 

7.   create similarity_class 

8.   similarity_class.label ← ‘unknown’ 

9.  similarity_class.trials.add(event execution outcomes) 

10.  if (similarity_class.trials do not show similar outcomes) 

11.   similarity_class.label ← ‘dissimilar’ 

12.  else if (similarity_class.trials.count = number_of_adequate_trials) 

13.   similarity_class.label ← ‘similar’ 

14.   for each event in similarity_class 

15.    if (event is unexecuted) 

16.     mask(event) 

17.  if (all unexecuted events in RIA are masked) // crawler finished all dissimilar events 

18.   switch ( user_setting_on_similar_events ) 

19.   case (skip) 

20.    end the crawling. 

21.   case (postpone) 

22.    unmask all events in RIA 

23.    turn off similarity detection mechanism 

  

 

For simplicity, the pseudo-code describes a rather inefficient but simplistic implementation 

of the method.  

If a class is labelled ‘unknown’ or ‘dissimilar’, its events are executed as usual according to 

the exploration strategy. If a class is labelled ‘similar’, however, it masks its events (except 

those already executed) from the exploration strategy so they are not executed (lines 14-

16). This is how the strategy is directed to diversify the crawl and find broader data as soon 
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as possible. A user-adjustable variable determines whether to skip or simply postpone 

executing similar events. In line 17, after the crawler finishes exploring all other events in 

the RIA, if the variable is set to ‘skip’, the crawling session terminates (line 20). Otherwise, 

the masked similar events are now unmasked (lines 21-23) and the crawler proceeds to 

execute them based on its exploration strategy. In the former case, the crawling cam finish 

in substantially less time with maximum results. In the latter case, there is no positive 

impact on the overall running time, but postponing similar events has resulted in the 

crawler finding more diverse results earlier. 

We believe that this method of categorizing events into classes is more effective than the 

methods that simply detect lists (e.g. the one used in [41]) for our intended use case, since 

it provides a more flexible framework for detecting, testing and handling similar events; 

Most importantly because it detects similar events across the entire RIA, as opposed to a 

single DOM. Moreover, it can deal with similar events that might be in different portions of 

a DOM, and doesn’t require them to be necessarily in the form of lists. The next section 

discusses classifying events into similarity classes in more detail.  

 Solution Elaboration 

In order to classify events in classes, a procedure is needed that given an event, returns the 

similarity class it belongs to. (get corresponding similarity class of() procedure in the 

pseudo-code above). Internally, the procedure uses information about the event that can 

be obtained statically form the DOM, and computes a ‘similarity ID’ (function f in 

section 5.2). Similarity ID is then matched between events to group them into similarity 
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classes. Events that have identical similarity IDs belong to the same similarity class. Because 

similarity IDs have a one-to-one correspondence to similarity classes, they are used as 

identifiers for similarity classes. 

As hinted in the previous section, part of the similarity ID takes into consideration the 

event’s characteristics, and part of it considers the event’s surrounding context. Appending 

these two string forms the final similarity ID. 

f(e) = concat( f1(e) , f2(c(e)) ) 
 

Where f is the function that computes similarity ID of an event, e is the event, E��	 is the 

context of event e, and f1 and f2 are functions that return strings. G1 is a function that takes 

into account the event itself and f2 is a function that takes into account the event’s context. 

Moreover, a similarity criteria is needed for event execution outcomes as well, in order to 

compare them during the trials. As a result, event outcomes also have their own similarity 

IDs (function g in section 5.2). Finally, in order to evaluate the effectiveness of this whole 

crawl diversification mechanism, a criteria is needed for comparing crawling end-results. 

Each of these parts are elaborated in the following sub-sections accordingly. 

Event Similarity Part 1: Event String 

We observe that events that have similar behaviour tend to call the same JavaScript 

function, though maybe with different arguments. Moreover, they are usually attached to 

HTML nodes of the same HTML element type. Based on these observations, our procedure 

of producing a similarity ID is as follows: Write the event’s owner HTML node type as an 

empty closed element, with all its attributes that contain a JavaScript call, replacing the 
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arguments passed to each function call by a single integer that shows the number of 

arguments. Below is an example of part of a DOM that has two similar events: 

<tr> 

<td>Chelmsford</td> 

<td>Accusation</td> 

<td> 

<a onclick="javascript:ajaxFunction('myevent',726)">Joan Waterho…</a> 

</td> 

</tr> 

<tr> 

<td>Spittal</td> 

<td>Accusation</td> 

<td> 

<a onclick="javascript:ajaxFunction('myevent',1521)">John Hutto…</a> 

</td> 

</tr> 

With the method described above, the event’s part on similarity ID (return value of G1��		 

would be: 

<a onclick="javascript:ajaxFunction(2)" /> 

 

Static analysis of the function body could also be performed to provide additional data, 

which would make this algorithm more accurate but more computationally costly. In our 

implementation, however, we did not use JavaScript static analysis due to its complexity. 

Classifying events solely based on the event itself is sometimes insufficient. Sometimes the 

context of the event also plays an important role in determining the event’s outcome. 

Therefore, the context of events should also be taken into consideration when grouping 

them based on their expected similar behaviour. The following section elaborates on this 

matter. 
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Event Similarity Part 2: Context Similarity 

Consider a RIA that has a list of products, and for each product it has a set of photos. Both 

the product list and the photo album provide pagination using next/previous buttons. Since 

the first set of buttons load a list of products while the other set load some picture, they 

have dissimilar outcomes and therefore should be put in different similarity classes. 

However, it can happen normally that all next/previous buttons in the RIA are implemented 

using the same framework and therefore exhibit similar code. If only event code is used in 

similarity ID, both sets of buttons would be placed in the same similarity class. Not only this 

is unintended, but worse, it causes inconsistent behaviour, as described by the following 

two scenarios: 

Scenario 1: Based on the exploration strategy, the crawler executes a few trials on the 

‘next’ button on the product list before it gets to the photo section. Because the trials show 

similar outcomes, the similarity class is labelled ‘similar’ and therefore the crawler skips 

executing the ‘next’ button on the photo section when it gets to it. 

Scenario 2: Under a different exploration strategy, the crawler executes the ‘next’ button 

on the product list once, and sometime later it executes it on the photo section before 

getting to executing it on the product list twice. Citing the difference in outcomes, the 

similarity class is labelled ‘dissimilar’ and therefore all next/previous buttons on all 

paginations are executed during the crawl. 

To avoid this problem, the surrounding context of an event must also be considered in 

generating a similarity ID, so the next/previous buttons on a product list and on a photo 
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album are regarded as separate classes of events. In our implementation, we use an event’s 

owner component-state as its context. A similarity ID is therefore defined on component-

states. (Denoted as	G2�E��		) 

Various methods used by different research studies for defining a state equivalency 

criterion can be used as similarity ID for component-states. Examples are found in [41], 

[32], [49], [50]. Our implementation uses a custom configuration on top of the method 

introduced in [41] and applies it to the XML representation of the component-state. The 

algorithm works as follows: 

1. Any text content is disregarded 

2. Algorithm finds a node whose children are all leaves in the tree. 

3. Algorithm traverses the leaves and while traversing, it checks for patters of 

consecutive repeating elements such as <A><B><C><A><B><C> (A sequence like 

<A><B><C><D><A><B> in not considered such a pattern, since the repetitions of <A><B> 

are not consecutive). 

4. If pattern is detected, all the repetitions are eliminated. 

5. The reduced sequence is sorted and is inserted into the parent node as text content, 

turning the parent node into a leaf. In the abovementioned example of 

<B><A><C><B><A><C> the result would be a new leaf node <Parent> with text "<A><B><C>" 

(i.e. <Parent><A><B><C></Parent>). 

6. Steps 2-5 are repeated until the XML is reduced to a single node. 
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7. Finally, a hash function such as MD5 is applied to the resulting XML to obtain a 

fixed-length string. This string is then used by our method as the similarity ID for the 

component-state. 

By appending this string to an event’s computed string from previous section, we form the 

event’s complete similarity ID, used to classify events. 

Outcome Similarity  

As stated earlier, similarity classes are labelled according to comparing similarity of trial 

outcomes. Therefore, it is necessary to define a similarity criterion for event execution 

outcomes as well. Defining outcome similarity depends on how event outcomes are 

modelled. Since our implementation uses component-based crawling introduced in 

chapter 3, event executions are modelled as multi-destination transitions, in which 

destination states correspond to the component-states that appear as a result of the event 

execution. Therefore, our outcome similarity ID (function g) is “the set of component-state 

similarity IDs of the destination component-states”. 

H��	 � 5G0��	|�E��	, �, �) ∈ �7 

The component-state similarity ID of each individual destination is obtained using the same 

function f2 introduced before. If future versions of the component-based model gather 

more information about event execution outcomes, that information might as well be used 

in the outcome similarity ID. 
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 Result Comparison  

The similarity criteria introduced so far are enough for the functionality of the mechanism. 

However, in order to study the effectiveness of the whole similarity detection mechanism 

introduced in this chapter, we need to be able to compare different crawling end-results, to 

see if the crawler indeed finds dissimilar results earlier by using this mechanism. Depending 

on the crawler’s goal, crawling results are in different forms and thus different comparison 

criteria need to be defined accordingly. A content scanner, for example, should have a way 

to define similar content, whereas a crawler that scans for security entities needs to define 

a specification for duplicate security entities. 

 Experimental Results 

In this section we perform experiments to study the effectiveness of Similarity Detection. 

The goal is to observe the rate of finding dissimilar content during the crawl, and the impact 

of enabling Similarity Detection mechanism on that. 

All the experiments in this section are run using component-based crawling method. In 

these experiments, as the crawler discovers new component-states, it examines the 

similarity of the newly found component-state to those already found. At each step, the 

number of dissimilar component-states found so far is logged. We can then use the log to 

plot data gathering during the crawl. In the plots presented in this section, the x axis is the 

number of events executed thus far and the y axis is the number of dissimilar component-

states found thus far. Therefore, the plots show how soon dissimilar content is found during 
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the crawling procedure. For comparing component-states for similarity, we use the 

component-state similarity ID introduced in section 5.3. 

Each experiment is run twice. In one, Similarity Detection mechanism is turned off and in 

the other, the crawler is set to postpone similar events. The plots are presented below. In 

all the charts, the red dotted line corresponds to execution without similarity detection, 

and the blue solid line corresponds to execution with skipping similar events. 

 

Figure 24. Finding dissimilar content during the crawl procedure in TestRIA, with and without Similarity 

Detection mechanism 

As we can see in Figure 24, on TestRIA enabling Similarity Detection mechanism successfully 

helps us find dissimilar content much sooner. On TestRIA, there are paginated catalogs 

(with next/previous buttons) of products, pictures, and services. The content shown for 

each item in these categories has similar structure to the other items in the same category. 

Therefore, after examining 2 pages of each section, Similarity Detection postpones 
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exploration of further paginated content to the end of crawl, resulting in us finding more 

diverse content first. 

 

Figure 25. Finding dissimilar content during the crawl procedure in ClipMarks with 3 list items, with and 

without Similarity Detection mechanism 

Figure 25 shows the same phenomenon in ClipMarks. ClipMarks has a list of items, and 

each item in the list has similar behaviour. Enabling Similarity Detection in this case also 

successfully results in finding more dissimilar content sooner, mainly due to the existence 

of the list. Based on these results, we speculated that using the full RIA (which has 40 list 

items in our snapshot) must showcase the effectiveness of Similarity Detection more 

evidently. The results for running on the full version of ClipMarks are presented in Figure 

26. 
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Figure 26. Finding dissimilar content during the crawl procedure in ClipMarks with 40 list items, with and 

without Similarity Detection mechanism 

As seen in Figure 26, Similarity Detection on the full version of the RIA provides a significant 

benefit. The gap between the two lines in the chart increases as we increase the number of 

list items in the RIA. 

 

Figure 27. Finding dissimilar content during the crawl procedure in Altoro Mutual, with and without Similarity 

Detection mechanism 
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In Figure 27 we see result of experiments on Altoro Mutual. Altoro Mutual is an example of 

a RIA in which all DOMs look different, and there is almost no similar parts in the RIA. As a 

result, Similarity Detection cannot help in faster obtaining results in this RIA. 

 

Figure 28. Finding dissimilar content during the crawl procedure in Bebop, with and without Similarity 

Detection mechanism 

Figure 28 displays results on Bebop. In this RIA, most of the contents of the entire RIA are 

reachable within a few clicks from the initial DOM, and the main functionality of the RIA is 

to sort and filter the same data in different manners. As a result, as seen in Figure 28, most 

of the dissimilar contents are found soon even without the Similarity Detection mechanism. 

However, turning on the Similarity Detection mechanism still helps in discovering the 

contents even faster, although the difference may not seem as remarkable as in test cases 

such as ClipMarks. 
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Figure 29. Finding dissimilar content during the crawl procedure in elFinder, with and without Similarity 

Detection mechanism 

Finally, we study the effectiveness of Similarity Detection on elFinder. As we can see, our 

Similarity Detection in not effective on all RIAs. In this case for example, the website code is 

too complicated for our heuristic methods to find out similar events and classify them 

together. As a result, most events are considered dissimilar and no useful change is made to 

the order of executing events. More powerful heuristic functions for calculating similarity ID 

may solve this problem in future.  

To sum up, Similarity Detection can prove effective in some cases, allowing for diversifying 

the crawl and finding dissimilar content sooner. On other test cases, however, our current 

scheme provides no useful change in the direction of the crawler.  
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 Conclusion 

By detecting similarity between events, a crawler can cover dissimilar portions of the RIA 

and produce the most diverse and comprehensive set of results in less amount of time. In 

this chapter, we discussed the importance of similarity detection and provided a solution. 

Our solution groups events into similarity classes based on heuristics, performs trials to 

ensure similarity of members of a class, and helps the crawler skip similar events. Skipped 

events can optionally be executed later. 

Experimental results show that using this method can improve the speed of finding diverse 

contents in some cases, and make no significant difference in other cases where the RIA 

does not contain similar contents, or the heuristic cannot detect them. 
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6. Conclusions and Future Work 

This thesis provides solutions for one of the most prevalent problems in the context of 

crawling AJAX-based RIAs: state space explosion.  

The main contribution of this thesis is presenting a novel crawling method called 

Component-based crawling. The method solves the problem of state space explosion in 

complex RIAs by identifying independent portions of a RIA and modeling the RIA in terms of 

components rather than DOMs. Using this method, the crawler can explore complex RIAs 

and finish the task in significantly less running times compared to other methods, with 

minimal or no loss of coverage. Moreover, this method results in a much smaller model of 

the RIA, which in turn allows for efficient analysis and testing of the model subsequently. 

This document provides description of the model as well as a complete algorithm for 

crawling RIAs using this model. The method is fully implemented and tested on a variety of 

different test cases. Experimental results verify significantly better performance and 

scalability of component-based crawling compared to DOM-based methods. Component-

based crawling opens door to crawling new web applications that were previously 

uncrawlable. 

In addition, Similarity Detection is introduced as a technique for diversifying the crawl. This 

approach allows for gathering more heterogeneous sets of data earlier during the crawl 

procedure, which can be of special importance during long crawling sessions. The method is 

implemented and tested on a variety of test cases. 



92 

This work can be enhanced in several directions in possible future works. We provide a 

discussion of these points as the final section of this document. 

The method of detecting components based on DOM diffs has no direct correspondence to 

the assumption that components are indeed independent. This means that dependent 

components can potentially exist in the model. Dependent components violate the 

assumptions of our crawling method, and can result in possible loss of coverage for the 

crawler. A future direction for this research is to develop a method to detect dependent 

components and merge them, in order to ensure proper coverage of the RIA. 

As another direction, static analysis of the JavaScript functions can prove helpful for this 

crawling method. It can provide more detailed information on events without executing 

them, which can help in better similarity detection. Moreover, through static analysis we 

might be able to discover dependencies and independencies among parts of a RIA, which 

can greatly improve detecting independent components for component-based crawling. 

In addition, more test cases are needed for a more comprehensive set of experimental 

results. Obtaining test cases can itself be a challenge, since available tools offer limited 

support for control over JavaScript execution. Therefore, deploying each new test case 

often requires modifications to the RIA or the tools or both, to ensure compatibility. We 

expect to have more experiments in the future to test the effectiveness of our proposed 

method. 
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The heuristic functions used in Similarity Detection can be enhanced further in the future to 

detect more types of similar content, in order to extend the applicability of this technique 

to father RIAs. 

Finally, adapting this method for distributed environments can help distributed crawlers in 

using this method in an efficient way. Given the fact that components are expected to act 

independently, and that the lack of knowledge about nested components does not impair 

crawling the results, this crawling method has a good potential to be adapted for 

distributed crawlers. 
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