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ABSTRACT

Rich Internet Applications (RIAs) which use JavaScript and
Ajax have become the norm for modern Web applications.
However with RIA, the reconstruction of user-interactions
from recorded HTTP logs is a new and challenging prob-
lem. We present D-ForenRIA a distributed tool for session-
reconstruction for RIAs. D-ForenRIA provides detailed in-
formation about user actions including DOM elements in-
volved and user-inputs provided. D-ForenRIA incorporates
novel techniques to order candidate user-interactions based
on DOM features and knowledge acquired during session
reconstruction. In addition, using several browsers concur-
rently makes the system scalable for real-world use. The re-
sults of our evaluation on several RIAs show that D-ForenRIA
can efficiently reconstruct use-sessions in practice.
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1. INTRODUCTION

“Rich Internet Applications” (RIAs [13]) use JavaScript
and Ajax [15] to create smooth and responsive browser-
based Web applications, providing end-users with an experi-
ence similar to “desktop” (i.e., non-Web) applications. RIAs
have become the norm for modern Web applications. For
example, Google has adopted RIA technologies to develop
most of its major products (Gmail, Google Groups, Google
Maps, etc.) In fact, we have evaluated the top 100 Web sites
from alexa.com and found 87 of them use Ajax to commu-
nicate with the server-side scripts?.

During a user session, each user-browser interaction with
a RIA generates a series of HTTP requests. The server
responds to these requests and the browser changes the state
of the application by processing these responses. The set of
exchanged messages during a session is called “User-Trace”
or “User-Log”.
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These traces can be captured (entirely or partially) on
the Web server (or on the network using a proxy) for fur-
ther analysis. A proxy serves as an intermediary between
the client and the Internet and thus can also be used to
capture traffic. These HT'TP logs are considered important
tools for Web developer and administrators. These logs are
essential in Web analysis and can be used to reconstruct the
user interactions from a given session. We call this “Session
Reconstruction”.

Session Reconstruction has several applications, including
in Web usage mining or in forensic analysis. For instance,
user logs contain important information about usage pat-
terns and the behavior of the users. Therefore, Session
Reconstruction can be used for Web usage mining to an-
alyze users’ behavior on a particular Web site. In Web us-
age mining, the extracted behavior of users can be used to
improve the application and better understand the user’s
needs. In forensic analysis, if the Web site administrator
has a recorded traffic of a malicious user session, then Ses-
sion Reconstruction can be used to find out how the user
interacted with the application to conduct the intrusion.

The previous techniques for session reconstruction using
HTTP traces focus on traditional Web applications (i.e.,
inter-linked static HTML pages accessible through hyper-
links). In these applications, users usually navigate between
pages by following links and the linked page is explicitly
mentioned inside attributes of the href element. An as-
sumption often made is that each user action navigates the
application to a new page with a new URL. In reality, how-
ever, RIAs do not meet this assumption and requests are of-
ten generated dynamically by JavaScript execution. Hence,
when the Web application is a modern RIA, “Session Recon-
struction” is not trivial. Such Web applications are based
on “asynchronous” communications which allow the client
to ask for specific data rather than a whole web page. Thus
an HTML page can be partially updated without changing
the URL. Therefore, determining the user interactions from
a set of asynchronous calls would be extremely difficult and
time consuming. To deal with this challenge, a technique
which efficiently and automatically finds user actions during
a session is required.

Manual reconstruction is extremely difficult, time con-
suming, and application dependent (i.e., a set of patterns
may vary for different RIAs). Such solution is not realis-
tic for large scale applications. We need a tool that can



perform an automated and complete reconstructions of user
interactions. Existing solutions require to either instrument
the user’s browser, or the Web application itself [5, 6], or
are based on predefined patterns of actions [21]. Such so-
lutions are inadequate in the real-world contexts. For ex-
ample, the administrator of the Web application learns that
a hacker found and exploited a vulnerability a few months
back. For forensic analysis the only available input is the
server-generated logs. This task is often performed off-line
without access to the initial Web server due to security con-
cerns of forensic analysis [11].

In order to address above challenges, we propose D-ForenRIA,

a tool that helps the administrator to recover the details
of the user-interactions after the fact using only the avail-
able logs. D-ForenRIA is an improvement over a previous
version of the tool, ForenRIA [7]. D-ForenRIA uses a col-
lection of browsers working concurrently to reconstruct the
session more efficiently, and the reconstruction techniques
have been improved. We demonstrated an early version of
D-ForenRIA [17] without any form of cost estimation, and
the evaluation leads to very good scalability. The reader
is invited to see [7] for more details on the old system (i.e.
ForenRIA). In addition, a companion site has been setup at
http://ssrg.site.uottawa.ca/sr/demo.html where videos and
further information is being made available.

The main contributions of this paper are:

e We propose D-ForenRIA, a distributed system which au-
tomatically reconstructs the user-interactions for RIAs us-
ing only previously recorded user-session logs as input.

e We propose learning mechanisms during reconstruction
which are based on the history of generated requests dur-
ing event executions.

e We empirically evaluate the efficiency of our approach
on five RIAs. The results show that our method can
efficiently reconstruct user interactions from previously
recorded HTTP traffic.

The rest of this paper is organized as follows: In Section 2,
we first model RIAs as a finite state machine (FSM) and then
define the session reconstruction problem. In Section 3, we
present the tool, D-ForenRIA, with detailed description of
its general architecture and session reconstruction approach.
We present some evaluation results that highlights the effec-
tiveness of D-ForenRIA in Section 4. Then we briefly discuss
the state of the art in Section 5. Finally, we present our con-
cluding remarks and future directions in Section 6.

2. PROBLEM DEFINITION

Our input is a set of previously recorded HTTP traffic
coming from the user session. The output we want to pro-
duce is the set of user-browser actions including user-input
data, DOM of the pages as seen by the user during the ses-
sion, and screenshots of each recovered state.

The log is composed of a list of < regq;, res; > pairs where
reg; is the i*" request and res; is the corresponding response.
More formally, we can describe the problem using finite state
machine (FSM) notation. An FSM is described by a quin-
tuple (1,0, S, so,d, \) where:

1. I is the set of possible user-browser interactions with the
RIA (Inputs to the FSM).

2. O is the set of possible generated HTTP requests and
responses.

3. S is the set of all states of the RIA reached by the user
during the session.

4. sp is the initial state of the RIA.

5.0:8 xI— S is the transition function where d(s;,a;)
refers to the next state of the application after execution
of a; in s;.

6. A: S x I — O isthe output function, where A(s;, a;) refers
to the generated requests and responses by executing ac-
tion a; at state s;.

A and ¢ functions can be extended to accept a sequence of
inputs (here a sequence of actions). For example d(so, a1 ...an)
refers to the state reached by the application after applying
the sequence of actions ai...a, from the initial state so.
After executing each action a; at state s;—1, the application
reach the next state s; (i.e., 0(si—1,a:) = s;).
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Figure 1: (a) A simple RIA and generated requests after
clicking on DOM elements. (b) Portion of the user’s log

Having defined the RIA as an FSM we can present the
problem using the following inputs and outputs: here as the
input we have the initial state so of the RIA and the set of
previously generated requests and responses 7T, and our goal
is to find the sequence of actions A where:

A(so, A) =T (1)

Following a series of action in A, we can infer all states of
the RIA during the given user-session.

Ezxample: Figure 1 shows the initial state of a simple RTA
application. This is a portion of an E-Commerce Website
where the user can click on each product and see its de-
scription. Figure 2 presents a portion of this RIA’s FSM.
This FSM shows four states S = {so, ..., s3} which refer to
states after clicking on the first, second, third products, and
“about-us” respectively?. For example, the initial state of the
application is sp and in this state by clicking on P2, two re-
quest /response pairs { Rb1, Rb2} are generated and the RTA
reaches state si.

Suppose that we have the user-log of Figure 1 (b), T' =
{Rb1, Rb2, Rai1, Raz, Ras, Rc1, Rea, Res}. Given this input
the desired sequence of actions is A = {P», P1, P3} which
satisfies equation 1.

20Other states are not shown to keep the diagram simple
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Figure 2: Portion of the FSM of the RIA in Figure 1. Inputs
represent clicking on an element, output represents gener-
ated HT'TP requests/responses

Working Conditions It is assumed that D-ForenRIA
has the log for a single user. Extracting such a single-user
log from server logs is a well-studied problem (see e.g., [22])
which is out of the scope of this paper. In our context, the
traffic has already been recorded and no additional instru-
mentation of the user’s browser is possible. In addition, our
reconstruction is done off-line with no access to the original
RIA. Furthermore, D-ForenRIA, currently can not support
situations where an action does not generate any HTTP
traffic.

3. PROPOSED SOLUTION

Architecture of the System: Figure 3 presents the gen-
eral architecture of D-ForenRIA, with the four main com-
ponents: SR-Proxy, SR-Browsers, Trace, and Output. D-
ForenRIA has been implemented as a distributed system,
where a number of SR-Browsers (Session Reconstruction
Browsers) interact with the SR-Prozy (Session Reconstruc-
tion Proxy) to concurrently reconstruct the user session.

The SR-Prozy performs the role of the original Web server,
and responds to the stream of requests sent by each SR-
Browser. D-ForenRIA is based on a distributed set of SR-
Browsers that can dynamically be added or removed during
the reconstruction process. Each SR-Browser is composed
of a real Web browser (e.g., Firefox) and a controller. The
controller is responsible for executing the message sent by
the SR-Proxzy on the Web browser (e.g., which action should
be executed on the current DOM). The previously recorded
HTTP trace is given as an input to the SR-Proxy. SR-
Browsers are responsible for doing what SR-Proxy asks them
to do (e.g. executing actions using its browser) whereas SR-
Proxy responds to the generated requests and verifies the
correctness of the actions. A distributed implementation en-
sures concurrent execution of several actions at each RIA’s
state. The SR-Proxy keeps track of previously tried actions
and uses this knowledge to choose the next candidate ac-
tions. D-ForenRIA recovers automatically and efficiently all
the required output of the session reconstruction process.
The Output includes the precise sequence of User actions
(e.g., clicks, selections), the User inputs provided during the
session, DOMs of each visited page, and screenshots of the
pages seen by the user.

Interactions between SR-Browser and SR-Proxy:
We now present the communication chain between a SR-
Browser and the SR-Proxy. Session reconstruction can be
seen as a loop of interactions, where the SR-Proxy repeat-
edly assigns the next candidate action to the SR-Browser

SR-Browser; [¢——p)

SR-Browser; f

SR-Browsers

SR-Browser,

Figure 3: Architecture of D-ForenRIA

(see Figure 4). We call this repetitive process iteration. We
refer to Figure 4 as an illustration of the sequence of mes-
sages exchanged between the main components with items
of the following numbers refer to the numbers in the figure.

1. At each iteration, the SR-Browser sends a “Next” message
asking SR-Prozy the action to do next.

2. The SR-Proxy asks the first SR-Browser reaching the
current state to send the list of all possible actions on the
current DOM (using the “Eztract (clue)” message). At
this step, the SR-Prozy also sends the clue (as explained
in Section 3.2) regarding the next expected HTTP re-
quests.

3. The SR-Browser extracts a set of candidate actions and
tags them using DOM based features (e.g., tags the ele-
ments that are hidden or have no event handler attached).
The SR-Browser sends these annotated actions to SR-
Proxy.

4. The SR-Proxy computes the score of annotated actions
using a scoring function (see Equation 2). These scores
are used to sort the list of annotated actions from the
most promising to the least promising action as explained
in Section 3.2.

5. After this, and while working on that same state, the SR-
Prozy assigns a new candidate action to each SR-Browser
that sends a “Next” message, along with all the required
instructions to reach that state (using an “Ezecute (ac-
tionlist)” message).

6. As each SR-Browser executes known or new actions, they
generate a stream of HT'TP requests. The proxy responds
to the generated requests using the recorded log (“HTTP
Request” / “HTTP Response” loop).

This outer loop continues until all user actions are recov-
ered.

3.1 Extraction of Candidate Actions

In D-ForenRIA, after a state is discovered, SR-Proxy as-
signs to one of the browsers the task of extracting the can-
didate user-browser actions on the DOM. These actions are
then assigned one-by-one to SR-Browsers by SR-Proxy un-
til the correct action is found. Examples of actions include
clicking on an element, scrolling down a list, filling a field
and submitting forms (which includes filling fields and click-
ing on a submit button).

Event-handlers and Actions: To find candidate actions,
D-ForenRIA needs to find “event-handlers” of DOM ele-
ments. Event-handlers are functions which define what should
be executed when an event is fired. For example, in Figure
6, FetchData(2) is the event-handler for onclick event of P2.
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Figure 4: Sequence diagram of messages between a SR-
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The existence of this event-handler means that there is a
candidate action ”Click P2” on the current DOM.

Detection of Event-Handlers: Event-handlers can be
assigned statically to a DOM element, or dynamically during
execution of a JavaScript code. To detect each type, we use
the following techniques:

1. Statically assigned event-handlers: to find this type of
handlers, it is enough to traverse the DOM and check
the existence of attributes related to event-handlers (e.g.
onclick, onscroll,...).

2. Dynamically assigned handlers: in JavaScript, dynam-
ically assigned handlers are set using the addFventLis-
tener function[2]. So, to find this type of event-handlers
we need a way to keep track of calls to this function. D-
ForenRIA, overrides the built-in addFventListener func-
tion (Figure 5) such that each call of this function noti-
fies D-ForenRIA about the call (Line 3) and then calls
the original addEventListener function (Line 4). This
technique is called hijacking [10] and can be realized by
injecting the code in Figure 5 in the current DOM.

The Importance of Bubbling: DOM elements can also be
nested inside each other and the parent node can be re-
sponsible for events triggered on child nodes via a mecha-
nism called “Bubbling”[4]. In this case, there is a one-to-
many relationship between a detected handler and pos-
sible actions and by finding an event-handler we do not
always know the actual action which triggers that event.
In some RIAs, for example, the Body element is responsi-
ble for all click events on the page. However, in practice
this event-handler is only responsible for a subset of the
elements inside the body. In this case, it is difficult to find
the elements which trigger the event and are handled by
the parent’s event handler. To alleviate this issue, D-
ForenRIA tries elements starting from the bottom of the
DOM tree assuming that leaf elements are more likely to
be elements triggering the event.

var addEventListenerOrig = Element.prototype.
addEventListener;
var EventListener=function(type,listener) {
notifyDynamicHandler (this, type, listener);
addEventListenerOrig.call(this, type,listener);

};

Element .prototype.addEventListener= EventListener;

Figure 5: Hijacking the built-in JavaScript AddEventLis-
tener function to detect dynamically assigned handlers.

Finally, the SR-Browser which has been asked to generate
the pool of actions extracts all possible actions based on
extracted event-handlers. In addition, for each action it also
calculates some meta-data describing features of elements
involved in that action. This meta-data is used to order
actions by the SR-Proxy side (Section 3.2.1).

3.2 Efficient Ordering of Candidate Actions

Web pages usually have hundreds of elements. So blindly
trying every action on these elements to find the right one is
impractical (see Section 4). In D-ForenRIA, we have several
techniques to order candidate actions. Our methods are
categorized into two sets.

3.2.1 Element-Based Ordering

In this technique we evaluate HTML elements based on
their properties. Our goal is to decrease the priority of ac-
tions with which users cannot interact. For example, ele-
ments which are invisible or elements without event han-
dler (Section 3.1) and elements with tags with which users
usually do not interact (e.g. script, link) have the lowest
priority.

This technique calculates the “meta-data” of each action.
This meta-data is the summary of the important features
of the elements involved in the action (e.g. whether ele-
ments are visible or not, whether any handler is attached
to them). When SR-Browser sends the actions to the SR-
Prozy (message (3) of Figure 4), each action is tagged by
this meta-data.

3.2.2 Signature-Based Ordering

In this category, a SR-Browser and the SR-Prozy collab-
orate to find the next most promising action. For instance,
when a SR-Browser reaches the correct state by executing
the correct action, it sends the “Next” message to the SR-
Prozy, which passes the information regarding the next ex-
pected HT'TP request as a response along with the “FEaxtract”
message (message 2 in Figure 4). We call this information
the clue.

The SR-Browser exploits the received clue to possibly find
a right action on the current DOM. For example, if the clue
suggests that the next possible action should be the naviga-
tion to page p, then all the href tags on DOM that point to
page p are assigned higher score and clicking on these actions
should have the maximum priority. In addition, if there are
other hrefs which request page ¢ (¢ # p), then clicking on
these elements should have the minimum priority.

The SR-Proxy also uses the knowledge acquired from the
traffic generated by previously tested actions (which we call
the “signature” of the actions) to prioritize the pool of ac-
tions.

The signature-based scoring function (see Equation 2) cal-
culates score(s,a,r) (such that score(s,a,r) € {0,0.5,1}) us-
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<meta name="SSRG" content="Sample RIA">
<body onload = "attachHandler ()">
<div style="visibility:hidden">SSRG 2016 </div>
<span>RIA Store:Choose one of the products</span>
<hr>
<span id=’pl’ >LG G4</span>
<span id=’p2’ >iPhone SE</span>
<span id=’p3’ onclick="FetchData(2)">0nePlus X</
span>
<div id="container">--</div>
<hr>
<a href="about.php">About Us</a>
<a href="contactus.php">Contact Us</a>
</body>

Figure 6: A simple DOM instance

ing clue r for all actions on the current state s. The most
promising actions will be assigned higher scores.

If we define PA as the set of previously executed actions,
we can calculate the score for candidate actions of a new
state using the following formula:

0 (a € PA) AVj —prefiz(A(s;,a),T)
score(ss,a,r) =4 0.5 (a ¢ PA)
1 otherwise

)

where s; is the current state and s; is one of the previous

states and prefiz(A, B) determines whether the sequence of

requests in A are at the beginning of the sequence of requests
in B.

If the signature of action a is not a prefix of the remaining
trace r, we should decrease the priority of a. On the other
hand, if a signature of a matches the next unconsumed trace,
a should be considered a promising action.

D-ForenRIA combines both element-based and signature-
based scoring to rank the promising actions (a.k.a., pool of
actions) at each state.

3.2.3 Example

To illustrate how D-ForenRIA orders actions on a page,
we use the simple RIA given in Figure 1 (a). The DOM of
this RIA and corresponding JavaScript code are shown in
Figures 6 and 7 respectively.

var reqs =
[ ["ral.json", "ra2.json",
["rbl.json","rb2.json"],
["rcl.json","rc2.json","rc3.json"]];
//Attch handlers
function attachHandler (){
$("#p1").on("click",
function(){ FetchData(0); });
document .getElementById ("p2").onclick =
function(){ FetchData(1); }

"ra3.json"],

¥
//Fetching data
function FetchData(id){
$(’#container’) .empty ();
for (res of regs[id]) {
$.get( res, function( data ,status ) {
$(’#container’) .append(data) ;
}, ’text’);
} )

Figure 7: A simple JavaScript code snippet
Considering the “Element-Based” ordering, D-ForenRIA
minimizes the priority of non promising elements. In the
DOM of Figure 6, the meta, hr and body elements have non-
promising tags and therefore are given the lowest priority.

Two div tags are also not promising because of being hidden
and having no handler attached, respectively.

To apply the “Signature-Based” ordering, the system should
calculate the score of any action based on its A\ function. At
the initial state, the priority for two hrefs is minimum since
their initiating requests (about.php and contactus.php) do
not match the next expected requests. The score for the
remaining actions are 0.5 since the system has not tried
any action yet. Assume that actions are tried in the order
p1, P2, p3. D-ForenRIA will try pl and p2 to discover the
correct list of actions. In addition it learns A(so,p1) and
A(s0,p2). At the next state, pl gets the score of I since
its signature Rai, Ras, Ras matches the remaining of traces
(< Rai, Raz, Ras, Rey, ... >), p2 gets score of 0 since its A
does not match and p3 gets 0.5 since we have not tried this
action yet. So, the correct action p; is detected immediately
since it has the maximum score of 1. At the third state, ps3
gets a score of 0.5 while p; and po are assigned score 0. At
this state also the correct action is detected immediately.
To sum up, the 3 actions are found after trying 4 actions on
the DOM. Blindly trying all possible actions could require
executing 8 + 7 4+ 9 = 24 actions® on the page. Since there
are 14 actions in the current DOM on average 14 +~ 2 =7
actions should be tried before finding the correct action by
trial and error.

3.3 Checking the Stable Condition (SR-Browser)

The SR-Browser usually needs to execute a set of actions
as decided by the SR-Proxy in response to a “Next” message.
After triggering each action, a SR-Browser should wait until
that action is completed and the application reaches what
we call a “stable condition”.

To check the stable condition, a SR-Browser checks two
things:

e Receiving All Responses: D-ForenRIA uses two techniques
to be sure that the response for all generated requests
have been received. First, SR-Browser waits for the win-
dow.onload event to be triggered. This event is being
triggered when all resources have been received by the
browser. However, this event is not triggered when a func-
tion requests a resource using Ajax.

To keep track of Ajax requests, D-ForenRIA overrides
XMULHttpRequest’s send and onreadystatechange functions.
The first function is being called automatically when a re-
quest is being made and the second function can be used
to detect when a response is fully received by the browser.

o Applicability of the Action on DOM: When there is no
more pending requests, the system waits for the elements
involving in the action to appear on the page. This check
is required to let the browser consume all previously re-
ceived resources and render the new DOM.

3.4 Timeout-based Ajax calls

RIAs sometimes fetch data from the servers periodically
(e.g., current exchange rate or live sports scores).

There are different methods to fetch data from the server.
One approach, which is called polling, periodically sends
HTTP requests to the server using Ajax calls. There is

3There are 14 actions in the DOM of Figure 6, and if D-
ForenRIA traverses the DOM tree in postorder way, clicking

on products p1, p2 and p3 are 8", 7" and 9" actions in the
pool of candidate actions.



usually a timer set with setTimeout/setInterval functions
to make some Ajax calls when the timer fires. To keep track
of such calls, D-ForenRIA takes a two-step approach:

1. Timer Detection: It detects all registered timers by over-
writing the setTimeout/setInterval functions. The SR-
Browser then executes these functions to let the SR-Proxy
know about the signature of the timer.

2. Timer Triggering: Since D-ForenRIA knows the signa-
ture of timers, when it detects that the next expected
HTTP request matches the signature of any timeout based
function, it asks a SR-Browser to trigger that function
(According to formula 2).

However there are two other approaches to implement pe-
riodic updates: Long-Polling which is based on keeping a
connection between client and server open, and WebSock-
ets which creates a bidirectional non-HTTP channel be-
tween the client and server. Currently, D-ForenRIA sup-
ports polling but not Web-Sockets and Long-Polling.

3.5 Handling Randomness (SR-Proxy)

Randomness occurs when the execution of the same action
generates a different set of requests and responses. This
can happen at the client-side as well as at the server-side.
However, D-ForenRIA is based on a proxy (that act as a
server) which replays the same traffic, therefore our system
would not face the server-side randomness.

If the client includes randomly generated values in the re-
quests, then these requests will differ from the recorded traf-
fic. For example, random parameters are one of the meth-
ods to disable proxy caching in modern RIAs. Handling the
client-side randomness is challenging. In D-ForenRIA, the
SR-Prozy uses a deterministic method (i.e., the same ac-
tion is selected each time) to detect a partial match of the
generated requests from the recorded traffic. If the partial
match satisfies what we call the similarity criteria ,that is,
everything is similar except the values of parameters in the
resources, SR-Proxy asks the browser to re-execute the same
action. If the SR-Proxy observes a change in the same set of
parameters, then it concludes that the action contains ran-
domly generated values. The system does not consider these
random parts of the requests for checking the correctness of
the action.

3.6 Other features of the system

In addition to a distributed architecture, D-ForenRIA uti-
lizes other techniques to make the session-reconstruction
practical and efficient. The reader is referred to [7] for de-
tailed explanation of the basic version of D-ForenRIA:

e Finding User-Inputs: D-ForenRIA can also detect the
form submission actions to continue the session recon-
struction. The SR-Prozry glance over the log for the oc-
currence of < name,value > pairs and sends this infor-
mation as a clue to SR-Browser. The SRBrowser tries to
match < name,value > pairs inside the clue with input
elements on the current DOM and then tries different ac-
tions to submit the form. However, D-ForenRIA currently
does not support other non-HTML-form user-inputs.

e Loading the Last Known Good State (Reset): When a SR-
Browser executes an incorrect action it should reload its
previous state. In this case, D-ForenRIA asks the SR-
Browser to “reset” to the initial state and execute all pre-
viously detected actions.

e Verifying the Correctness of an Action: SR-Proxy con-
siders an action correct if the entire set of generated re-
quests/responses eventually form a gap-less block in the
recorded traces and this gap-less block comes right after
the previously matched block.

4. EXPERIMENTS

To assess the effectiveness of the proposed session recon-
struction system we have conducted several experiments.
Our research questions can be presented as follows.

e RQI1. Is D-ForenRIA able to reconstruct user-session effi-
ciently?

e RQ2: Does distributed reconstruction have a positive in-
fluence on the performance and is there any limit on the
number of browsers that can be added to reduce the exe-
cution time?

e RQ3: How effective are different techniques of ordering
candidate actions on a given state?

e RQ4: What are the User-Log storage requirements in D-
ForenRIA?

Our experimental data along with the videos are available
for download®.

4.1 Subject Applications

In this paper, we limit our test-cases to RIAs. We used
sites with different technologies and from different domains.
The reason to focus on RIAs is that other tools can already
perform user-interaction reconstruction on non-Ajax Web
applications (e.g. [19]). Table 1 presents characteristics of
our test-cases.

The first site, C1, in our case study is a web-based open-
source file manager, written in JavaScript using jQuery and
jQuery UL Our second case, C2, is an Ajaxified version of
IBM’s Altoro-mutual website. This is a demo banking web-
site used by IBM for demonstration purposes. Our team
has made this website fully Ajax-based where all user ac-
tions trigger Ajax requests to dynamically fetch pages. C3
is a fully Ajax-based periodic table and C5 is a Website
developed by our team which represents a typical personal
homepage. The more advanced website, C4, is a Web-based
goal setting and performance management application built
using Google Web toolkit) which has numerous clickables at
each state.

4.2 Experimental Setup

Experiments are performed on Linux-based computers with
an Intel™® Core™?2 CPU at 3GHz and 3GB of RAM on a
100Mbps LAN. To implement the D-ForenRIA SR-Browsers,
we used Selenium over actual browsers. D-ForenRIA’s SR-
Proxy is implemented as a Java application. For each test
application, we recorded the full HTTP traffic of user inter-
action with the application using Fiddler®.

To address RQ1, we captured a user-session for each of the
subject applications and ran D-ForenRIA to reconstruct the
session using the given traffic. We report “cost” and “time”
of the reconstruction as measures for efficiency.

“http://ssrg.site.uottawa.ca/sr/demo.html
®http://www.telerik.com/fiddler



Table 1: Subject applications and characteristics of the recorded user-sessions
n
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ID | Name % | % | URL
C1 | Elfinder 175 | 150 | https://github.com/Studio-42/elFinder
C2 | AltoroMutual | 204 | 50 | http://www.altoromutual.com/
C3 | PeriodicTable | 94 | 45 | http://ssrg.site.uottawa.ca/aprb/successl/
C4 | Engage 164 | 25 | http://engage.calibreapps.com/
C5 | TestRIA 74 | 31 | http://ssrg.eecs.uottawa.ca/testbeds.html

The “cost” counts how many events SR-Browsers have to
execute before successfully reconstructing all interactions.
The following formula calculates the cost of session recon-
struction:

ne+ 3 en) 3)

where n. is the number of actions on the user’s session and
there are n, resets (see Section 3.6) during reconstruction
and the ‘" reset, 7, has cost of ¢(r;). If we define I(r;)
as the number of actions discovered before the i reset, we
have ¢(r;) = I(r;) in our implementation of loading last know
good state (see Section 3.6)

As a point of comparison, the results are also provided for
the “basic solution” defined as follows:

The basic solution: Any system aiming at reconstruct-
ing user-interactions for RIAs needs to at least be able to
handle user inputs recovery, client-side randomness, sequence
checks and be able to restore a previous state, otherwise re-
construction may not be possible. In our experiments, we
call such a system the “basic solution”. It performs an ex-
haustive search for the elements of the DOM to find the
next action and it does not use the proposed techniques in
Section 3.2. To the best of our knowledge at the time of
writing, no other published solution has the characteristics
of such a basic solution, and thus no other solution can help
reconstructing RIA sessions, even inefficiently.

The no-reset time: If our session reconstruction algo-
rithm can find all user-browser interactions without trying
incorrect actions it does not need any reset. We also report
the inferred time for this “no-reset” algorithm by measur-
ing the total time required by D-ForenRIA to reconstruct
the session minus the time spent during reloading the last
known good state. This provides an “optimal” time for our
tool.

To address RQ2, for each given user-session log, we ran D-
ForenRIA with 1,2,4 and 8 browsers and report cost/time of
the reconstruction to measure scalability of the system. To
address RQ3, we ran D-ForenRIA using a single browser and
measure how effective is applying each of the element/signa-
ture ordering at each DOM. Finally, to answer RQ4 we re-
port storage requirements for each action in the compressed
format and the effect of pruning multimedia resources from
traces.

4.3 Experimental Results

Efficiency of D-ForenRIA (RQ1): Table 2 presents
the time and cost of reconstruction of full sessions using D-
ForenRIA, and the basic solution. In this experiment we use

Table 2: Time and Cost of reconstruction using
D-ForenRIA, and the basic solution.

ID | D-ForenRIA Basic Solution
#Events EFPIImrr?s) #Events r{ﬁmnfs)
C1l | 2,882 0:11:01 | 102,933 | 09:51:26
C2 | 52 0:02:25 | 34,505 04:31:57
C3 | 1,325 0:04:22 | 308,548 | 19:28:48
C4 | 3,506 0:19:47 | 21,518 02:12:01
C5 | 394 0:02:29 | 14,847 00:48:29

just a single SR-Browser. We report time measurement for
several browsers in the next section.
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Figure 8: Breakdown of the number of resets needed to iden-

tify a user-browser interaction in D-ForenRIA (a) and in the
basic solution (b).

D-ForenRIA outperforms the basic solution in all cases.
On average it takes 44 events to be executed to find a user-
browser interaction while the basic solution needs 5964 events.
Regarding the execution time, D-ForenRIA (even using a
single browser) is an order of magnitudes faster than the
basic solution. On average D-ForenRIA needs 13 seconds
to detect an action while the basic solution needs around 8
minutes to detect an action.

Number of Resets per Action: Figure 8 present a break-
down of the number of resets needed to detect a user browser
action in the test cases in D-ForenRIA and the basic solu-
tion. For D-ForenRIA, in all cases the majority of actions
are identified without any reset (The worst case happens in
C4 where 32% of actions need at least one reset to be found
and 12% of these actions need more than 50 resets). On
average in our test-cases 84% of actions are found imme-
diately at the current state based on the ordering done by
the SR-Browser and SR-Proxy (Section 3.2). On the other
hand, for the basic methods (Figure 8 (b)), 96% of actions
need at least 25 resets. This figure also shows that the ba-
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Figure 9: Scalability of D-ForenRIA in different RIAs com-
pared to the no-reset time.

sic solution tries more than 50 actions to find 32% of actions.

Performance of the Distributed Architecture (RQ2):

Figure 9 presents the execution time of the system when we
add more browsers to reconstruct the sessions. The results
are reported for 1,2,4 and 8 browsers. Since D-ForenRIA
is concurrently trying different actions on each DOM we
expected that adding more browser would speedup the pro-
cess. In fact, if the algorithm needs nr; resets to find the
it? correct action, using nr; browsers should decrease the
execution time. The results we obtained verified this ar-
gument. The best speedup happens in C3 and C4 where
we have the largest number of resets (See Figure 8). For
C5 adding more browsers is not as effective as C4 and C3
since many actions are found correctly without the need to
try different actions (Ordering of actions detect the correct
action as the most promising one (Section 3.2)). However,
adding more browsers is not always beneficial; For example
in C2, we observed no improvement of the execution time
after adding more browsers (from 2 to 4). This is because
in this application many actions are found immediately by
D-ForenRIA. In this case, adding more browsers to try dif-
ferent candidate actions at each DOM is not beneficial.

Efficiency of Candidate Actions Ordering Tech-
niques (RQ3): As we discussed in Section 3.2, SR-Proxy
and SR-Browsers in D-ForenRIA collaborate to find the
most promising candidate actions on the current DOM. D-
ForenRIA uses several techniques which we categorized as
“Element-based” and ”Signature-based”. To understand the
effectiveness of theses techniques we measured the charac-
teristic of each DOM during reconstruction. For each DOM,
we were interested to know the number of elements, number
of visible elements, elements with handler, leaf elements, the
size of the DOM and also number of signatures that can be
applied on the DOM. Table 3 presents the average of these
measurements for all DOMS of the test cases. On average,
over all applications, there were 267 elements on the DOM,
86% of them are visible, 17% have handler, 54% are leaves

Table 3: Characteristics of DOM elements and
ratio of elements with signatures at each DOM
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Table 4: Log size features for test cases

. Pruned
D I;i?is(;r/l ki%ifxllz‘(gl(/B) Log Size/
Action (KB)

Ci | 1.16 1.58 1.2

Cy | 1.36 1.41 0.41

Cs | 1.05 1.12 1.12

Cy | 6.56 11.47 9.96

Cs | 2.38 3.38 3.38

and D-ForenRIA has the signature of 16% elements on the
current DOM.

Filtering based on visibility is effective in all cases and
reduces candidate actions by 15%. Ordering based on event
handlers is quite effective in all cases except in C4. If we ex-
clude C4, 77% of elements don’t have any handler. In RIAs
like C4 where there is a single handler to handle all events
on the DOM, it is very challenging to find elements with
actual event handlers. As we suggested in Section 3.2, D-
ForenRIA gives high priority to leaf elements of the DOM.
However, there is still a considerable ratio of leaf nodes, 54%
on the DOMs. To sum up, in websites similar to C4, it was
insufficient to just apply “Element-based” ordering, however
“Signature-based” was effective in all cases and we could ap-
ply it on 16% of elements on each DOM.

User-Log Storage Requirements (RQ4): One of the
features of the input user-log for D-ForenRIA is that it
should contain both HTTP request and response. It includes
the body of requests and responses. One may be concerned
about the size of the user-log. To investigate the storage
requirements of “Full” HTTP traffic in RIAs we measured
some features of HT'TP logs in our test cases (Table 4). e

As expected the number of requests for each action is quite
low. In our experiment the actions with the most number of
requests are usually the first page of the application and the
average number of requests per action is less than 3 requests.
This low number of requests are expected because of Ajax
calls for partial updates of the DOM which are common in
RIAs. To measure the storage requirements, we calculated
the compressed required space® to store the “full” HTTP
request-responses of each action. The required size for each
action varies from as low as 1.12 KBs to the high of 11.74
KBs for C4 and the average is 3.79 KBs. We also considered
pruning the log from multimedia resources (i.e. Images and
videos). With pruning, the average required space dropped

5The compression was done using 7z algorithm



by 15% and reached about 3.2 KBs. These numbers seem
promising because of the trend in decreasing costs of stor-
age devices. In addition, the Web-master can purge the
recorded traffic after session reconstruction or if it does not
seem interesting for further analysis.

4.4 Discussion:

Recording HTTP traffic: The HT'TP requests exchanged
between a browser and the server can be logged in different
places in the network; They can be logged on the server, in
the proxy-server or even on the client-side. However, record-
ing using proxy or on the client-side requires additional con-
figuration/installation of recording software which is not de-
sired. We believe that the best scenario to use D-ForenRIA
is recording the traffic on the server side”. HTTP servers
(Like Apache[3] or IIS[1]) can be configured to record the
full traffic which is the input of session reconstruction. It is
notable that to be able to use D-ForenRIA, there is no need
to change the Web application or to instrument any code on
the client side. In addition, no extra information is collected
on the server side which minimizes privacy concerns.

SSL and recording HTTP traffic: In D-ForenRIA it is as-

sumed that the traffic is in plain format and no decryption
is needed on the input. Although SSL[14] provides a secure
connection “between” a client and the server it does not en-
crypt logs on the server. Therefore SSL is not a barrier for
recording the traffic on the server.
However, a real issue with SSL-enabled sites exists during
the session reconstruction process. SR-Browsers still want
to communicate with a real server, however, D-ForenRIA
does not have access to the actual server during reconstruc-
tion. To solve this problem, D-ForenRIA’s SR-Proxy acts
as a man-in-the-middle[8].

Importance of using Selenium: D-ForenRIA uses Se-
lenium to implement our SR-Browsers. Selenium enables
us to use different actual browsers (for example Chrome
or Firefox) during reconstruction. It is important for D-
ForenRIA to use the browser that the user has used while
visiting the website. For example, in our applications, C4
could only be reconstructed using FireFox since the website
generates slightly different resources based on the current
user’s browser. However, D-ForenRIA can detect the user’s
browser in the headers of HT'TP requests and select the right
type of browser automatically.

Threats to validity. A threat to the validity of our ex-
periments is the generalization of the results to other test
cases. To mitigate this issue, we used test cases from differ-
ent domains and test cases built using different technologies;
although we do need more test cases to make our results
more generalizable.

The other threat to the validity of our experiment is re-
lated to the cost/time function (Equation 3) that we used
to measure efficiency of D-ForenRIA. However, we believe
that these metrics capture the effectiveness of the system

properly.

5. RELATED WORKS

Formerly, user-session reconstruction meant being able to
find which pages a user had visited during a session, and dif-
ferentiating users in server logs. This task is often considered

Tt is notable that the SR-Proxy in D-ForenRIA is just used
during the reconstruction and not for recording the traffic.

as a preprocessing task for Web Usage Mining [23, 12]. In
this paper, we assume that individual user-session have al-
ready been identified using one of these techniques. To the
best of our knowledge at the time of writing, few works [9,
16, 19, 20] have been done in this area, notably there is only
one effort [7] to report for RIAs.

WebPatrol [9] introduced the concept of automated col-
lection and replay of Web-based malware scenarios (WMS).
The malware infection trails are collected by signature-based,
low-interaction “honey clients” and its scenario replay com-
ponent reconstructs the original infection trail at any time
from WMS depository. However, WebPatrol is not meant to
reconstruct generic RIA sessions and therefore it cannot be
adopted for our purpose. Resurf [16] proposed a graph-based
method, which creates click-through-stream of user’s session
based on a referral relationship between user-requests. Re-
cently, a session reconstruction [20] approach has been in-
troduced to reconstruct multi-tabbed user session, which is
considered non-trivial since HTTP logs do not contain infor-
mation regarding opened tabs. The method links browser
logs, HTTP logs and traces in lower layers of the network
to extract information regarding opened tabs. The working
condition of this approach requires traffic recording on the
user’s machine, which is a limitation in our context as we
aim to reconstruct user session from given HTTP logs. Such
assumption is also not convenient because of dependency on
end-users and privacy concerns.

The tools most related to our proposed approach are pre-
sented in ClickMiner [19] and ForenRIA [7]. ClickMiner [19]
reconstruct user session from HTTP traces recorded by a
passive proxy. Their proposed approach focuses on actions
that change the URL of the application. However, in RIAs,
many actions do not alter the URL but rather update the
DOM of the page [18]. In addition, although there is some
level of support for JavaScript, it is lacking the specific capa-
bilities (e.g., handling user-inputs, client-side randomness,
restoring the previous state, sequence check) that are re-
quired to handle RIAs. Our previous work ForenRIA [7] pro-
poses a forensics tool to perform automated and complete re-
construction of user session in RIAs. However, ForenRIA is
implemented as a single-thread system where a single client
(i.e., browser) is responsible to execute all the possible ac-
tions on a given page, which is not scalable. In addition, in
ForenRIA, the client-side randomness was handled by run-
ning the two concurrent instances of the SR-Browsers. How-
ever, such implementation occupies more resources (i.e., it
runs 2 times the number of required browsers), which is not
ideal. In this paper, we have replaced the single-thread sys-
tem with a distributed architecture for scalability and bet-
ter performance. Several improvements are also suggested
to handle client-side randomness, time-based Ajax calls, and
detection of stable condition.

6. CONCLUSIONS

In this paper, we proposed D-ForenRIA, a distributed
tool to recover user-browser interactions from a given HTTP
trace in RIAs. Session-reconstruction in RIAs is a challeng-
ing task since simply looking at data flowing between the
browser and the server does not provide the necessary in-
formation to reconstruct user-interactions. In contrast to
previous session-reconstruction methods, D-ForenRIA only
needs previously captured network traffic and there is no
need for manipulation of the web application or installation



of any softwares on the client-side.

Experiments on different websites show promising improve-
ment of performance and scalability, however there are dif-
ferent directions for improvements: first, the system must
be tested on larger sets of RIAs. In addition, we need better
algorithms to detect the most promising candidate actions
where signature-based ordering is inapplicable. Another re-
search area is to extend the ability of D-ForenRIA to de-
tect user input-data which are submitted without standard
HTTP forms.

There are other issues that remain open. For example, it
is still unclear how to effectively handle actions which do not
generate HTTP traffic or all of the requests that are cached
by the browser. How to handle this problem in a non-naive
way is also an open question.
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