
Model-based Crawling - An Approach to
Design Efficient Crawling Strategies for

Rich Internet Applications

Mustafa Emre Dincturk

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for a doctoral degree in Computer Science

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

c© Mustafa Emre Dincturk, Ottawa, Canada, 2013

Abstract

Rich Internet Applications (RIAs) are a new generation of web applications that break

away from the concepts on which traditional web applications are based. RIAs are more

interactive and responsive than traditional web applications since RIAs allow client-side

scripting (such as JavaScript) and asynchronous communication with the server (using

AJAX). Although these are improvements in terms of user-friendliness, there is a big

impact on our ability to automatically explore (crawl) these applications. Traditional

crawling algorithms are not sufficient for crawling RIAs. We should be able to crawl RIAs

in order to be able to search their content and build their models for various purposes such

as reverse-engineering, detecting security vulnerabilities, assessing usability, and applying

model-based testing techniques. One important problem is designing efficient crawling

strategies for RIAs. It seems possible to design crawling strategies more efficient than

the standard crawling strategies, the Breadth-First and the Depth-First. In this thesis,

we explore the possibilities of designing efficient crawling strategies. We use a general

approach that we called Model-based Crawling and present two crawling strategies that

are designed using this approach. We show by experimental results that model-based

crawling strategies are more efficient than the standard strategies.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Guy-Vincent Jourdan,

for his invaluable guidance and support.

I cannot be thankful enough to Dr. Gregor von Bochmann and to Dr. Iosif Viorel

Onut for their advice and support throughout my studies.

I would like to thank the members of the thesis committee, Dr. Nejib Zaguia, Dr.

Babak Esfandiari, Dr. Liam Peyton and Dr. James Miller for their constructive feedback

and their investment of time.

I am thankful to my MSc. supervisor, Dr. Hüsnü Yenigün, for encouraging me to

pursue a Ph.D.

Many thanks to Seyed M. Mirtaheri, Ava Ahadipour, Ali Moosavi, Kamara Benjamin,

Suryakant Choudhary, Khaled Ben Hafaiedh, Bo Wan and Di Zou for accompanying me

in this journey.

I would like to acknowledge the financial support of the IBM Center for Advanced

Studies (CAS) and the Natural Sciences and Engineering Research Council of Canada

(NSERC).

My special thanks to my family and to Gülden Sarıcalı for their love and support.

iii

Contents

1 Introduction 1

1.1 Traditional Web Applications . 1

1.2 Rich Internet Applications . 2

1.2.1 JavaScript and Document Object Model 3

1.2.2 AJAX . 4

1.3 Crawling Web Applications . 5

1.3.1 Motivations for Crawling . 5

1.3.2 Model of an Application . 6

1.3.3 Requirements . 6

1.3.4 Crawling Traditional Web Applications 8

1.3.5 Crawling Rich Internet Applications 8

1.3.6 Crawling Strategy . 11

1.4 Motivation and Research Question . 13

1.5 Overview and Organization of the Thesis 14

1.5.1 Contributions . 14

1.5.2 Organization . 15

2 Working Assumptions and Challenges 16

2.1 Introduction . 16

2.2 Working Assumptions . 16

2.3 DOM Equivalence . 18

2.4 Event Identification . 19

2.5 Intermediate States . 20

2.6 Conclusion . 21

3 Literature Review 22

3.1 Introduction . 22

iv

3.2 Traditional Crawling . 22

3.2.1 Crawling Strategies (URL Ordering) 23

3.2.2 Page Freshness . 24

3.2.3 Politeness . 25

3.2.4 Distributed Crawling . 25

3.2.5 Eliminating Redundant and Non-Relevant Content 26

3.3 RIA Crawling . 27

3.3.1 Crawling Strategy . 27

3.3.2 DOM Equivalence and Comparison 29

3.3.3 Parallel Crawling . 29

3.3.4 Automated Testing . 30

3.3.5 Ranking (Importance Metric) . 31

3.3.6 Related Graph Problem . 31

3.4 Conclusion . 32

4 Model-based Crawling 33

4.1 Introduction . 33

4.2 Model-based Crawling . 34

4.2.1 Meta-Model . 34

4.2.2 The Methodology . 34

4.3 Hypercube Meta-Model and the Initial Strategy 36

4.3.1 Hypercube Meta-Model . 37

4.3.2 Violations of the Hypercube Assumptions 37

4.3.3 The Initial Strategy . 38

4.4 The New Hypercube Strategy . 42

4.4.1 State Exploration Strategy . 44

4.4.2 Transition Exploration Phase . 49

4.4.3 Executing Events, Updating the Models and Handling Violations 50

4.4.4 Complexity Analysis . 51

4.4.5 Proof of Optimality . 53

4.5 Conclusion . 57

5 The Probability Strategy 58

5.1 Introduction . 58

5.2 Overview of the Menu Strategy . 58

5.3 Overview of the Probability Strategy . 60

v

5.4 Estimating an Event’s Probability . 61

5.4.1 Rule of Succession . 61

5.4.2 Probability of an Event . 61

5.5 Choosing the Next Event to Explore . 62

5.5.1 Algorithm . 64

5.5.2 Complexity Analysis . 66

5.6 Alternative Versions of the Strategy . 67

5.7 Conclusion . 72

6 Crawler Implementation 73

6.1 Introduction . 73

6.2 Crawler Architecture . 73

6.3 DOM Events and Event Identification . 75

6.3.1 Event Registration Methods . 75

6.3.2 Implementation . 77

6.4 DOM Equivalence . 82

6.4.1 Computing the HTML ID . 82

6.5 Conclusion . 84

7 Experimental Results 85

7.1 Introduction . 85

7.2 Measuring Efficiency . 86

7.2.1 Cost Calculation . 86

7.3 Strategies Used for Comparison and the Optimal Cost 87

7.4 Subject Applications . 88

7.4.1 Real Applications . 89

7.4.2 Test Applications . 94

7.5 Experimental Setup . 95

7.6 State Discovery Results . 97

7.6.1 Bebop . 99

7.6.2 ElFinder . 100

7.6.3 FileTree . 101

7.6.4 Periodic Table . 102

7.6.5 Clipmarks . 104

7.6.6 TestRIA . 105

7.6.7 Altoro Mutual . 106

vi

7.6.8 Hypercube10D . 107

7.6.9 Summary . 108

7.7 Total Cost of Crawling . 111

7.8 Time Measurements . 114

7.8.1 State Discovery and Complete Crawl Times 114

7.8.2 Distributions of the Complete Crawl Times 118

7.9 Conclusion . 121

8 Conclusion and Future Directions 123

8.1 Conclusion . 123

8.1.1 Adaptive Model-based Crawling 124

8.1.2 State-Space Explosion . 125

8.1.3 Greater Diversity . 125

8.1.4 Relaxing the Determinism Assumption 126

8.1.5 Distributed Crawling . 126

8.1.6 Mobile Applications . 126

A Experimental Results for Alternative Versions of Probability Strategy128

A.1 Introduction . 128

A.2 Algorithms to Choose a State . 128

A.3 Alternative Probability Estimations and Aging 131

A.3.1 Moving Average Techniques and Aging 131

A.3.2 Using EWMA for Both Event Probabilities and Pavg 134

A.4 Default Strategy with Different Initial Probabilities 134

A.5 Conclusion . 134

vii

List of Tables

7.1 Subject Applications . 89

7.2 Results for State Discovery . 109

7.3 Statistics for State Discovery Costs . 110

7.4 Results for Complete Crawls . 112

7.5 Statistics for Complete Crawls . 113

7.6 Costs and Time Measurements for Bebop 115

7.7 Costs and Time Measurements for Elfinder 115

7.8 Costs and Time Measurements for FileTree 116

7.9 Costs and Time Measurements for Periodic Table 116

7.10 Costs and Time Measurements for Clipmarks 116

7.11 Costs and Time Measurements for TestRIA 117

7.12 Costs and Time Measurements for Altoro Mutual 117

7.13 Costs and Time Measurements for Hypercube10D 117

7.14 Distribution of the Times for Bebop . 119

7.15 Distribution of the Times for Elfinder . 119

7.16 Distribution of the Times for FileTree . 119

7.17 Distribution of the Times for Periodic Table 120

7.18 Distribution of the Times for Clipmarks 120

7.19 Distribution of the Times for TestRIA 120

7.20 Distribution of the Times for Altoro Mutual 121

7.21 Distribution of the Times for Hypercube10D 121

viii

List of Figures

1.1 Synchronous Communication in Traditional Applications 4

1.2 Asynchronous Communication in RIAs 5

1.3 Model of a simple RIA . 10

4.1 A Hypercube of Dimension 4 . 38

4.2 Model of the Example Application . 41

4.3 (Partial) Crawling of the Example Application 43

5.1 Comparing a pair of states . 63

6.1 RIA Crawler Architecture . 74

6.2 HTML ID example . 79

7.1 Bebop Screenshot . 90

7.2 Elfinder Screenshot . 91

7.3 FileTree Screenshot . 92

7.4 Periodic Table Screenshot . 92

7.5 Clipmarks Screenshot . 93

7.6 TestRIA Screenshot . 94

7.7 Altoro Mutual Screenshot . 95

7.8 Hypercube10D Screenshot . 95

7.9 Model Visualizer Tool Screenshot . 97

7.10 State Discovery Costs for Bebop . 99

7.11 State Discovery Costs for Elfinder . 100

7.12 State Discovery Costs for FileTree . 101

7.13 State Discovery Costs for Periodic Table 102

7.14 State Discovery Costs for Clipmarks . 104

7.15 State Discovery Costs for TestRIA . 105

ix

7.16 State Discovery Costs for Altoro Mutual 106

7.17 State Discovery Costs for Hypercube10D 107

8.1 A web page with multiple widgets . 125

A.1 Comparison of Algorithms to Choose the Next State 129

A.2 State Discovery Costs Periodic Table Detail 130

A.3 State Discovery Costs using SMA and Aging for Bebop (in log scale) . . 136

A.4 State Discovery Costs using EWMA and Aging for Bebop 136

A.5 State Discovery Costs using SMA and Aging for Elfinder 137

A.6 State Discovery Costs using EWMA and Aging for Elfinder 137

A.7 State Discovery Costs using SMA and Aging for FileTree 138

A.8 State Discovery Costs using EWMA and Aging for FileTree 138

A.9 State Discovery Costs using SMA and Aging for Periodic Table 139

A.10 State Discovery Costs using EWMA and Aging for Periodic Table 139

A.11 State Discovery Costs using SMA and Aging for Clipmarks 140

A.12 State Discovery Results using EWMA and Aging for Clipmarks 140

A.13 State Discovery Costs using SMA and Aging for TestRIA 141

A.14 State Discovery Costs using EWMA and Aging for TestRIA 141

A.15 State Discovery Costs using SMA and Aging for Altoro Mutual 142

A.16 State Discovery Costs using EWMA and Aging for Altoro Mutual 142

A.17 State Discovery Costs using SMA and Aging for Hypercube10D 143

A.18 State Discovery Costs using EWMA and Aging for Hypercube10D 143

A.19 State Discovery Costs for Alternative Pavg 144

A.20 State Discovery Costs for Different Initial Probabilities 145

x

Chapter 1

Introduction

A Web application is an application that is accessed over the Web (usually using HTTP

over TCP/IP) and provides content and services using HTML documents. Web appli-

cations follow a client-server architecture. Web browsers (the client-side) provide con-

venient and platform-independent access to the information stored in the server. In the

early years of the Web, all the processing was done on the server-side and the client-

side was used only as a user interface. Over the last two decades, new web technologies

changed this situation by gradually adding more processing capability on the client-side

and employing more flexible communication patterns between the client and the server.

This resulted in more responsive and interactive web applications, so-called Rich Internet

Applications (RIAs). However, existing techniques for automatic exploration (crawling)

of web applications became insufficient for RIAs.

This thesis discusses the impact of the RIA technologies on crawling and addresses

the problem of designing efficient crawling strategies for RIAs. In this chapter, we look

at the differences between traditional web applications and RIAs, introduce the basic

concepts, and explain our motivation for this research.

1.1 Traditional Web Applications

A traditional web application is a collection of static web pages generated exclusively

on the server-side. Web pages are hypertext documents encoded in Hypertext Markup

Language (HTML). In addition to the content (such as text, images and tables), HTML

documents may contain references, called hyperlinks, to the other resources on the Web.

A hyperlink references a resource using a Uniform Resource Locator (URL). A URL

1

Introduction 2

contains the information required to access the resource: the name of the resource, the

host (server) address where the resource is located and the name of the protocol to use

to access the resource.

HTTP (Hypertext Transfer Protocol) is the communication protocol between the web

client and the server. HTTP is an application layer protocol using a request-response

style of communication. The basic request methods of HTTP are GET and POST, which

are used to retrieve content from the server. A POST request also allows to submit an

arbitrary amount of user data to the server. Using these methods, the client requests a

resource by providing the URL of the resource. When the server receives the request, it

locates the resource and sends it as a response.

A Web browser is a software that is used on the client-side to view and navigate

web pages. In a browser, when the user enters a URL of an HTML document, the

browser retrieves the document from the server and renders a visual representation of the

document. By clicking on a hyperlink found on the currently viewed HTML document (or

entering a URL directly), the user causes the browser to generate a new request. When

the response arrives, the browser loads the new page replacing the old one completely.

Traditional web applications use this synchronous communication pattern where the user

interaction is blocked until the response arrives and replaces the current page.

In the first years of the Web, the web pages were static. That is, they were prepared

and stored in the server in advance. Later, server-side technologies (such as CGI, PHP,

JSP and ASP) allowed pages to be tailored for each client and each request. When a page

is requested from the server, instead of returning a static HTML file stored in the file

system, the server could dynamically generate an HTML file based on the user-specific

data such as the parameters in the URL, the values entered in an HTML form, or the

type of the web client used. But, these applications are still considered “traditional

applications” since they consist of some URL-addressable web pages that are retrieved

synchronously from the server.

1.2 Rich Internet Applications

Rich Internet Applications (RIAs) are a newer generation of web applications that are

more interactive and responsive than the traditional ones. RIAs achieve this with two

essential enhancements: First, RIAs add flexibility to the client-side by allowing the

browser to carry out computation related to the application logic. That is, the server can

send, along with the HTML page, the scripts (such as JavaScript) that can be executed

Introduction 3

client-side when a user interaction takes place. These scripts are capable of modifying

the web page without contacting the server. Second, RIAs introduce an asynchronous

communication pattern. That is, these scripts can generate and send new requests to

the server while the user continues interacting with the application without waiting for

the responses of these requests.

There are several RIA technologies such as AJAX (Asynchronous JavaScript and

XML) [40], Flex [11], Silverlight [56] and Java Applets that can provide the browser these

enhancements. Except AJAX, all these technologies require a plug-in to be installed on

the browser. AJAX uses established web standards (JavaScript and XML), which are

supported by all major browsers without additional plug-ins. In this thesis, we focus on

AJAX applications but the concepts are applicable to the other similar technologies as

well.

1.2.1 JavaScript and Document Object Model

JavaScript is a programming language that is primarily used to add code to the client-side

of a web application. Browsers are capable of interpreting and running JavaScript code.

Browsers also implement a platform and language independent interface, called DOM

(Document Object Model) [66] that allows computer programs to access and modify the

contents, style and structure of HTML and XML documents.

A DOM instance is the internal (in-memory) representation of an HTML document

in the browser. To render an HTML document, the browser first parses the document

and creates the DOM instance by creating the objects (DOM elements) for the HTML

elements and their attributes. These objects are bound together in a tree structure (DOM

tree) representing the hierarchical relationships of the HTML elements in the document.

The DOM instance is then used to create a visual rendering of the HTML content.

Using the DOM interface methods, a JavaScript code is able to access and manipulate

the DOM instance that is currently shown to the user. When some JavaScript code

modifies the DOM instance, the browser reflects these modifications to the user by re-

rendering the modified parts.

DOM Events

In a browser, JavaScript execution is triggered by an event.

Event : An event is an action (or time-out) that causes JavaScript code exe-

cution.

Introduction 4

Every event is associated with a DOM element. The DOM interface specifies the possible

types of events for DOM elements. Two example events are onclick (the user clicks on an

element) and onload (an element, usually a page, frame, or image, has just been loaded).

When an event occurs, the browser detects the element on which the event happened

and executes all event handlers that are registered to the element for that event.

Event Handler : An event handler is some JavaScript code that runs as a

reaction to an event.

1.2.2 AJAX

AJAX (Asynchronous JavaScript and XML) [40] is a technique that is used for commu-

nicating with the server asynchronously. Asynchronous communication for web appli-

cations means that when a request is made to the server, the browser does not block

user interactions while waiting for the response to come. Instead, the browser allows the

user to continue interacting with the page and possibly generate new requests. This is

in contrast to the synchronous communication pattern in traditional web applications.

Figure 1.1 and Figure 1.2 show the two communication patterns.

Figure 1.1: Synchronous Communication in Traditional Applications

In AJAX, an asynchronous request is achieved using an instance of the JavaScript

object called XMLHttpRequest. This object is capable of sending the standard HTTP

requests (usually GET and POST). When using this object, the JavaScript code that

must be run to handle the response data, called the callback method, should be specified.

Introduction 5

Figure 1.2: Asynchronous Communication in RIAs

When the response arrives, the browser runs the specified callback method which may

modify the DOM instance using the data received. The AJAX technique makes continu-

ous user interaction and partial page updates possible. AJAX eliminates the requirement

for complete page refresh each time a request is made. Instead, the information received

from the server may now be used to change a portion of the web page. While some parts

of the page is being changed, the user can still interact with the other parts.

1.3 Crawling Web Applications

Crawling is the process of exploring a web site or an application automatically. A crawler

is a tool that performs crawling. The crawler aims at discovering the web pages of a

web application by navigating through the application. The crawler behaves like any

other user in the sense that it simulates possible user interactions and can only observe

the client-side of the application. However, the crawler explores the application in an

automated and more efficient manner.

1.3.1 Motivations for Crawling

There are several important motivations for crawling, for example, content indexing,

automated testing, and performing automated analyses such as security vulnerability

detection and usability assessment.

Introduction 6

To search for information on the Web, Web users rely on search engines. In order

for search engines to know what information is available on the Web, they have to keep

looking for new pages and index their content. Without crawling and indexing, the

information in these pages would be very hard to find for Web users.

Since web applications are also used for providing sensitive data and services, there are

often concerns with the security and the usability of these applications. To address these

concerns, many commercial and open-source automated web application scanners exist

[15, 32]. These tools aim at detecting possible issues in an application, such as security

vulnerabilities and usability issues, in an automated and efficient manner. These tools

have to use crawlers to discover the existing pages in the application so that they can

analyze the pages for the targeted issues.

1.3.2 Model of an Application

The result of crawling is called a model of the application. A model of the application

essentially contains the existing pages (DOM instances) and the ways to move from one

page to another. A model can be thought as a State Machine consisting of states and

transitions:

State: A client-state (or simply state) is the state of the application as it is

seen on the client-side. States represent DOM instances.

Transition: A transition represents the execution of an event that leads the

application from one state to another.

The crawler builds a model of the application starting from a given page (or pages)

of the application (normally the home/index page), simulating the user actions on the

DOM instances it encounters, augmenting the current model by adding new states for

each new DOM instance and recording the events that cause change from one state to

another as transitions.

1.3.3 Requirements

Below, we list some requirements that we believe are important for a crawler to satisfy

when building a model of the application.

• Correctness of the Model: The extracted model should be a correct represen-

tation of the explored parts of the application.

Introduction 7

• Deterministic Crawl: The crawling algorithm should be deterministic. That

is, when the same unchanged application is crawled twice, the same model should

be produced by the crawler. This is important since we want to be able to use

the model produced by the crawler for analyzing the discovered pages. The model

should be reproducible as long as the web application is not changed.

• Completeness of the Model: We believe that the crawler should be able to build

a complete model of the application when given enough time. That is, when we

remove any time constraint on the crawler, it should guarantee that any reachable

state in the application will eventually be found. Also, the crawler should be able

to capture the necessary information to reach a discovered state. This information

should include the variables and user-inputs that may be necessary to trigger a

transition, in addition to the links or the events. Completeness is important since

we want all the pages of the application to be available for analysis or indexing at

some point during the crawl.

• Efficiency of the Crawl: The model should be built in an efficient manner. For

us, being efficient means that the crawler should discover as much of the model

as quickly as possible. Since the valuable information is present in the states

rather than the transitions, an efficient crawler aims at discovering the states of

the application first rather than exploring the transitions between already known

states. This is important since the crawl may not terminate in a feasible amount of

time for some large applications,. In that case, even if it is not possible to wait the

crawl to finish, we desire crawler to discover the maximum amount of information

in the time it is allowed to run. Thus, we can index or analyze more content from

the application.

We note that the last two requirements are not universal requirements. Some may

argue that the completeness is not required since one may only be interested in the pages

that seem “important” rather than exploring everything, or some may define the crawling

efficiency in a different way by saying crawling efficiency is about deciding what parts

of the application to crawl. For example, it can be argued that exploring a state that is

more than 3 clicks away from the initial page is not necessary and leads to inefficiency

since most real users do not go that deep in the application. For us, the concept that is

referred to with such arguments is the effectiveness of the crawl rather than efficiency.

Effectiveness of the crawl can be defined as discovering important pages first given an

Introduction 8

importance metric. Even if the aim is to just to discover a subset of the existing pages (the

important ones), it is still important to discover all these pages in an efficient manner.

1.3.4 Crawling Traditional Web Applications

Crawling traditional applications is relatively easy compared with crawling Rich Internet

Applications. In a traditional application, each page is addressed by a URL. Hence, the

states of a traditional application can be identified based on the URLs. The basic task for

the crawler is to find the URLs in the application. The algorithm to achieve this is simple.

The crawler starts with a given set of URLs (seeds) of the application and removes a

URL from this set, downloads the corresponding page, from the page extracts all the

URLs that are not seen before and adds them to the set. The process is repeated until

the set becomes empty. We refer to this type of exploration as “URL-based crawling”.

1.3.5 Crawling Rich Internet Applications

URL-based crawling is not sufficient for crawling RIAs since the assumption that each

state is addressed by a URL is not valid in RIAs. In RIAs, client scripts can change the

state without changing the URL. It is not uncommon for a RIA to have a single URL,

where the whole application is navigated via events.

In order to crawl RIAs, it is necessary to execute the events found in each state.

To achieve this, the crawler should analyze each DOM instance and identify the DOM

elements that have registered event handlers. Then, the crawler can execute these event

handlers as if a user interaction took place and see how the DOM instance changes. We

refer to the execution of an event handler by the crawler simply as an event execution.

When crawling a RIA, our goal is to start from a state that can be directly reached

by a URL and extract a model that contains all the states reachable by event executions.

We refer to this type of exploration as event-based crawling.

Model Representation

The model that is built for a URL by event-based crawling can be conceptualized as a

Finite State Machine (FSM). We formulate an FSM as a tuple M = (S, s1,Σ, δ) where

• S is the finite set of states

• s1 ∈ S is the initial state of the URL

Introduction 9

• Σ is the set of all events in the application

• δ : S × Σ→ S is the transition function

The initial state s1 is the state that represents the DOM instance reached when the

URL is loaded.

During exploration, the application can be in only one of its states, referred to as the

current state.

For two states si and sj and an event e if δ(si, e) = sj then the application (modeled

by the FSM M) performs a transition from the state si to the state sj when the event e is

executed in si. (si, sj; e) denotes such a transition. The state from which the transition

originates (si) is called the source state and the state to which the transition leads (sj)

is called the destination state of the transition.

The transition function, δ, is a partial function: it may be that only a subset of

the events in Σ can be executed from a given state s. This subset contains the events

associated with elements existing in the DOM represented by s. It is called the enabled

events at s.

M is deterministic under our working assumptions which are explained in Chapter 2.

An FSM M = (S, s1,Σ, δ) can be represented as a directed graph G = (V,E) where

• V is the set of vertices such that a vertex vi ∈ V represents the state si ∈ S

• E is the set of labeled directed edges such that (vi, vj; e) ∈ E iff δ(si, e) = sj. When

it is not important, we omit the edge’s event label and simply write (vi, vj).

In a graph, any sequence of adjacent edges is called a path. We note the concatenation

of two paths P and P ′ by juxtaposition: PP ′. Given paths P, P ′, PP , PS, we say P ′ is a

subpath of P if P = PPP
′PS, where PP and PS are (possibly empty) prefix and suffix of

P , respectively. The length of a path P is the number of edges in P .

Building a Complete Model

Under our working assumptions (explained in Chapter 2), we aim at building a complete

model. Building a complete model means that every state (and every transition) will

eventually be discovered. Achieving this requires to execute each enabled event at each

discovered state.

The same event can be enabled in multiple states. It is not enough to execute the

event only from one of the states since executing the same event from a different state

Introduction 10

may lead to a different state. For example, Figure 1.3 shows a simple model for a RIA

where the content of the application can be navigated using the “next” and “previous”

events. Notice that each instance of the event “next” (or “previous”) leads to a different

state, depending on where it is executed. To make sure that no state is missed, the

crawler should execute from each state all the enabled events at least once.

Figure 1.3: Model of a simple RIA

In the remainder of the thesis, we refer to the first execution of an event e from a

state s as the “exploration of e from s” (sometimes, we say a transition is explored to

mean that the corresponding event is explored from the source state).

When building a model for a given URL, initially we start with a single vertex rep-

resenting the initial state reached by loading the URL. Then, the crawler identifies the

enabled events on the initial state and explores one of the enabled events. After each

event exploration, the model is augmented by adding a new edge for the newly discovered

transition. If a new state is discovered, a new vertex is added to the model. When each

enabled event at each discovered state is explored, a complete model is obtained for the

URL.

A complete crawling strategy for RIAs should apply event-based crawling in addition

to URL-based crawling since there are RIAs that use the traditional URL-based naviga-

tion together with the event-based navigation. In this case, for each discovered URL, the

event-based crawling needs to be done if there are events enabled on the corresponding

page. Also, it is also possible to find URLs that are only discoverable thorough executing

a sequence of events. This means that either crawling technique may create new tasks

for the other; during URL-based crawling the crawler can discover pages with enabled

events and during event-based crawling the crawler can discover new URLs.

In this thesis, we focus on event-based crawling. So, the crawling strategies explained

in this thesis should be applied to each distinct URL in an application for a complete

coverage. Combining URL-based crawling and event-based crawling is not addressed in

this thesis. Simple strategies for such a combination can easily be defined.

Introduction 11

Transfer Sequences and Resets

While crawling a RIA, a state usually has to be visited multiple times (at least, once

for each enabled event in the state). Unlike traditional applications, the crawler cannot

jump to any state in RIAs: to move from the current state to another state, the crawler

has to follow a path of already explored events that is known to lead to the desired state.

We refer to such a sequence as a transfer sequence1.

Transfer Sequence: A transfer sequence is a sequence of already explored

events executed by the crawler to move from one known state to another.

In some cases, the crawler executes a transfer sequence after a reset.

Reset : A reset is the action of going back to the initial state by loading the

URL.

Sometimes, resetting may be the only option to continue crawling of a URL: a state

where there is no enabled event can be reached, or the crawler needs to transfer to a

state which is only reachable through the initial state of the URL and the crawler has

not yet discovered a transfer sequence to the initial state from the current state.

1.3.6 Crawling Strategy

A crawling strategy is an algorithm that decides how crawling proceeds. That is, for

URL-based crawling, the crawling strategy basically decides the exploration order of the

discovered URLs. In the case of event-based crawling, the crawling strategy decides the

exploration order of the (state, event) pairs (i.e., from which state which event should

be explored next).

Effect of Strategies on Crawling Efficiency

We defined crawling efficiency as the ability to discover as much state as possible as soon

as possible. The effect of the crawling strategy on the crawling efficiency is significantly

different for traditional applications and RIAs. In traditional applications, the crawling

1One may ask why the crawler needs to execute a transfer sequence instead of storing each DOM it

discovers and simply re-loading the stored DOM of the desired state. However, this is not feasible: this

requires the crawler to allocate a significant amount of storage to store the DOMs, and more importantly,

in most RIAs, when a stored DOM is loaded to the memory, the functionality of the application will be

broken since the JavaScript and the server-side context of the application will not be correct.

Introduction 12

strategy does not affect the crawling efficiency much. For a given traditional application,

the number of distinct URLs that needs be downloaded is fixed and the order in which

these URLs are downloaded does not make much difference since it is usually true that

each new URL leads to a new state. What the crawling strategy mostly affects in URL-

based crawling is the “effectiveness” of crawling which is the ability to discover the

“important” pages quickly based on a given importance metric [59, 25] (we discuss the

effectiveness in more details in Section 3.2.1).

For RIAs, on the other hand, crawling strategy is an important factor for the crawling

efficiency. This is mainly for two reasons:

• Although the number of events to explore in an application is fixed, it is not true

that every event exploration discovers a state. In fact, only a minority of the

event explorations lead to new states during the crawl, considering there are often

significantly more transitions than states. A crawling strategy for RIAs should be

able to predict which (state, event) pairs are more likely to discover a state and

give them priority.

• The time spent on executing transfer sequences during the crawl also depends on

the decisions of the crawling strategy. The state where the next event will be

explored is chosen by the strategy. Also, the choices made by the strategy affects

how soon the shortest transfer sequence between two states is discovered. The

time spent executing the transfer sequences increases the time required to crawl an

application. So, crawling strategies should try to minimize this time for efficiency.

Shortcomings of the Standard Crawling Strategies for RIAs

Two existing and widely-used crawling strategies are the Breadth-First and the Depth-

First. Although these strategies work well with traditional applications, they are not

efficient for crawling RIAs since they lack the mentioned characteristics of an efficient

strategy: Neither strategy has a mechanism to predict which event is more likely to

discover a new state. In addition, both strategies explore the states in a strict order which

increases the number and the length of transfer sequences used by these strategies. That

is, the Breadth-First strategy explores the least recently discovered state first, whereas

the Depth-First crawling strategy explores the most recently discovered state first. Note

that, exploring a state means to explore every enabled event of the state. That implies,

for example, when these strategies explore an event from a state s, and if as a result,

another state s′ is reached, the crawler needs to transfer from s′ to s in order to finish

Introduction 13

remaining unexplored events in s (in the case of Depth-First, assume s′ is a known state).

A more efficient strategy would try to find an event to explore from the current state or

from a state that is closer to the current state, rather than going back to the previous

state after each event exploration.

1.4 Motivation and Research Question

The lack of adequate techniques and algorithms required for crawling RIAs has important

consequences. The inability to crawl RIAs means that the content in these applications

are not indexed by search engines, hence cannot be searched by Web users. To our

knowledge, none of the existing search engines have the crawling capability for RIAs2.

Also, without building a model of the application, RIAs cannot be tested automatically.

It is also not possible to automatically scan RIAs for security vulnerabilities or usability

issues. Today, none of the existing web application scanners has enough crawling ca-

pabilities to handle RIAs [15, 32]. This means that the security vulnerabilities and the

other issues targeted by these scanners remain undetected when RIA technologies are

used in web applications.

As more and more web applications adopt RIA technologies, the need for addressing

the problems related to RIA crawling escalate. Also, web authoring tools make it easy

to automatically add RIA technologies to websites. As a result, even the simplest ap-

plications built without any programming ability by some content editor easily become

non-searchable.

In this thesis, we aim to advance the current limited research on crawling RIAs by

exploring the possibilities of designing crawling strategies which are more efficient than

the Breadth-First and the Depth-First strategies. This is an important research question

since the existing research on RIA crawling still relies on these standard strategies which

do not have much potential to be efficient.

2For example, Google [41] acknowledges its inability to crawl AJAX applications and suggests a

method where the web developer has to present the static HTML snapshot of each state reachable by

AJAX, when asked by Google. The web developer also has to produce the URLs for the AJAX states

by appending the hashbang sign (#!) followed by a unique name for the state to the application’s URL

and put these URLs somewhere visible to the crawler, such as Sitemap. When the crawler sees such

a URL, it understands that this is an AJAX state and asks the server for the static HTML snapshot

corresponding to that state. Obviously, this method just makes crawling the responsibility of the web

developer and is not a real solution to RIA crawling.

Introduction 14

1.5 Overview and Organization of the Thesis

RIAs break away from the concepts on which traditional web applications are based.

As a result, traditional crawling algorithms are not sufficient for crawling RIAs. New

crawling algorithms and techniques are needed to be able to search, automatically test or

analyze RIAs. One important problem that needs to be addressed is designing efficient

crawling strategies for RIAs. It seems possible to design crawling strategies more efficient

than the standard crawling strategies, the Breadth-First and the Depth-First since these

are general algorithms that do not take into account the features of RIAs. Exploring the

possibilities of more efficient crawling strategies is the main goal of our research.

In this research, we follow a general approach called Model-based crawling to design

efficient crawling strategies. Model-based crawling provides some guidelines to design

new crawling strategies for RIAs. Using this approach, several new crawling strategies

have been introduced. The first model-based crawling strategy is the Hypercube strategy.

An initial version of the Hypercube strategy is explained in [16, 18] (in Kamara Ben-

jamin’s master thesis); however, this initial version has severe limitations that make it

impracticable. For this reason, in this thesis we introduce a new version of the Hypercube

strategy that removes these limitations. The second model-based crawling strategy is the

Menu strategy that is introduced in [26] (in Suryakant Choudhary’s master thesis). For

the Menu strategy, we provide a short overview. The most recent model-based crawling

strategy is the Probability strategy which is introduced in this thesis.

In this research, we are collaborating with IBM R©. We have implemented our model-

based crawling strategies and the other known strategies on a prototype of IBM R© Security

AppScan R© [44], a web application scanner. We show by experimental results that the

model-based crawling approach results in more efficient crawling strategies.

1.5.1 Contributions

The main contributions of this thesis can be listed as

• introduction of the concepts of model-based crawling in a formal way,

• a significantly improved version of the Hypercube strategy whose initial version

was introduced in [16],

• introduction of the Probability strategy as a new crawling strategy for RIAs,

• implementation of a prototype crawler for RIAs,

Introduction 15

• an experimental study where the performances of the existing and the model-based

crawling strategies are evaluated using five real AJAX-based RIAs and three test

applications,

• an experimental study where several alternative versions of the Probability strategy

are evaluated.

1.5.2 Organization

This thesis is organized as follows.

In Chapter 2, we explain our working assumptions and the challenges related to RIA

crawling.

In Chapter 3, we present an overview of the work related to traditional crawling and

a survey of the existing work related to RIA crawling.

In Chapter 4, we explain the model-based crawling approach and the first model-

based crawling strategy, the Hypercube strategy.

In Chapter 5, we first give a short overview of the Menu strategy [26] and then explain

the Probability strategy in details.

In Chapter 6, we present the details of our crawler implementation.

In Chapter 7, we present an experimental study that compares the performances of

the model-based crawling strategies and the existing strategies on several real and test

applications.

In Chapter 8, we conclude the thesis and provide some future directions to expand

the research on RIA crawling.

In Appendix A, we present some further experimental results with the alternative

versions of the Probability strategy.

Chapter 2

Working Assumptions and

Challenges

2.1 Introduction

Although designing efficient crawling strategies is an important problem, it is not the

only challenge for crawling RIAs. In this chapter, we explain other challenges related to

crawling RIAs.

In Section 2.2, we explain our working assumptions. The challenge to determine if a

DOM instance is equivalent to another DOM instance that was seen before is explained

in Section 2.3 . The challenge of identifying events is explained in Section 2.4. (The

algorithms we have used in our implementation to address these two challenges are

explained in Chapter 6.) In Section 2.5, we explain the notion of “intermediate states”

caused by AJAX requests. Finally, in Section 2.6 we conclude the chapter.

2.2 Working Assumptions

When building a model, we make some limiting assumptions regarding the behavior of

the application being crawled. The assumptions we make are in line with the ones made

in the related works. These assumptions are related to determinism and user inputs.

16

Challenges and Assumptions 17

Determinism

We assume that the behavior of the application is deterministic from the point of view

of the crawler: from the same state, executing the same event leads to the same state1.

Formally, the following is satisfied

∀sx, sy ∈ S ∀e ∈ Σ. sx = sy ∧ δ(sx, e) = sk ∧ δ(sy, e) = sl ⇒ sk = sl (2.1)

Similarly, a reset is assumed to always lead to the same initial state. With this assump-

tion, we can use partially extracted model to generate transfer sequences that can be

reliably used to move from one known state to another known state.

A dependence of the application that is not directly observable on the client-side can

potentially violate this assumption. For example, if there is a change on the server-side

state, the result of executing an event from a given state could be different at different

times. The state change on the server-side could be a result of some action we do during

crawling, such as executing an event that modifies the application database, or it can

even be an external factor not related to crawling, such as an application that behaves

differently according to time of the day. Since the crawler only observes the changes on

the client-side, a possible change on the server-side may not be detected.

How to cope with the cases when the determinism assumption is violated is not

addressed in this thesis.

User Inputs

The second working assumption is about user inputs. User inputs are considered an

event during crawling. However, there is a very large number of possible values that can

be entered by a user (for example, consider the text that can be entered in a text field

of a form), so it is not usually feasible to try all of them during the crawl. Instead, we

assume that the crawler is provided with a set of user inputs to be used. We are not

making any assumptions regarding the coverage of the provided set; we just guarantee

that the model that is being built is complete for the values provided.

How to a choose a subset of the possible user inputs that will provide a good coverage

is not addressed in this thesis. There has been some research addressing this problem

[58, 67, 48]. In the ideal case, the subset provided to the crawler must be enough to

discover all the states of the application.

1Because of this assumption, it is possible to represent the model we are building as a deterministic

Finite State Machine: δ is a function.

Challenges and Assumptions 18

2.3 DOM Equivalence

To be able to build a model, the crawler must decide after each event exploration whether

the DOM it has reached corresponds to a new state or not. This is needed to avoid

exploring the same states over and over again. Moreover, if the current DOM is not a

new state, the crawler must know which of the known states it corresponds to.

A simple mechanism is equality where two DOMs correspond to the same state if and

only if they are identical. But, equality is a very strict relation and not very useful for

most applications. Web pages often contain parts that change when the page is visited at

different times or that do not contain any useful information (for the purpose of crawling).

For example, if the page contains timestamps, counters, or changing advertisements,

using equality will fail to recognize a page when the page is visited at a later time,

simply because these “unimportant” parts have changed (see [27] for a technique that

aims at identifying the non-relevant parts in a web page automatically).

More generally, the crawler could use a DOM Equivalence Relation2. A DOM equiv-

alence relation partitions the DOMs into equivalence classes such that each equivalence

class represents a state in the model. Using the DOM equivalence relation, the crawler

decides if the current DOM maps to an existing state in the model or not.

The choice of a DOM equivalence relation should be considered very carefully since

it affects the correctness of the produced model and the efficiency of the crawl. If the

equivalence relation is too strict (like equality), then it may result in too many states

being produced, essentially resulting in state explosion, long runs and in some cases

infinite runs. On the contrary, if the equivalence relation is too lax, we may end up with

states that are merged while, in reality, they should be considered different, leading to

an incomplete, simplified model.

Unfortunately, it is hard to propose a single DOM equivalence relation that can be

useful in all situations. The choice of the DOM equivalence depends on the purpose of

the crawl, as well as the application being crawled. For instance, if the purpose of the

crawl is content indexing, then the text content of pages should be taken into account.

But, in the case of security analysis, the text content usually has no significance for

deciding the equivalence of DOMs.

2Mathematically, a binary relation, ∼, on a set, A, is an equivalence relation iff it has the following

three properties: 1. reflexivity (∀a ∈ A. a ∼ a), 2. symmetry (∀a, b ∈ A. a ∼ b⇒ b ∼ a), 3. transitivity

(∀a, b, c ∈ A. a ∼ b ∧ b ∼ c⇒ a ∼ c). An equivalence relation partitions the underlying set, i.e., divides

the set into non-empty, disjoint subsets whose union cover the entire set. Each subset in the partition

is called an equivalence class.

Challenges and Assumptions 19

For the correctness of the model produced, it is important to have a DOM equivalence

relation that is an equivalence relation in mathematical sense (i.e., the relation must

be reflexive, symmetric and transitive). In addition, it is reasonable to constrain the

equivalence relation such that the DOMs in the same equivalence class have the same set

of enabled events. Otherwise, two equivalent states would have different ways to leave

them. This will result in a model that cannot be used reliably to move from one state to

the other. When two DOMs with different set of events are mapped to the same state,

we can never be sure which set of events we are going to find in that state when we visit

it again.

When implementing a DOM equivalence relation, it is important to use an efficient

mechanism to decide the equivalence class of a given DOM. It is usually not feasible to

store discovered DOMs and compare a given DOM against all. For this reason, finger-

printing techniques are usually used to determine the equivalence class of a DOM. That

is, when a DOM is reached, it is first transformed into a normalized form (for example, by

removing unimportant components of the DOM) and the hash of this normalized DOM

is produced. This hash value is stored and used to identify equivalent DOMs efficiently:

if two DOMs have the same hash values then they are considered equivalents.

We note that DOM equivalence is a concept independent of the crawling strategy; a

crawling strategy can work with any appropriate DOM equivalence relation.

2.4 Event Identification

Another challenge in crawling RIAs is identification of events. The crawler should be able

to detect the enabled events at a state and produce identifiers to differentiate between

these events. The event identification mechanism must be deterministic. That is, for

an event at a state, the same event identifier must be produced every time the state is

visited. This is required since the crawler must know whether an event has already been

explored from the state or not. Also, to be able to trigger a known transition at a later

time, the crawler needs to recognize the event that corresponds to the transition among

the events enabled at the source state. The event identification is also important for

DOM equivalence since we require that two equivalent DOMs need to have the same set

of enabled events.

In addition, an event identification mechanism should allow the crawler to recognize

the instances of the same event at different states. Although it is still be possible to crawl

an application without this capability, this is important for designing efficient crawling

Challenges and Assumptions 20

strategies. Recognizing instances of the same event at different states allows crawling

strategies to make predictions about the event’s behavior.

Since events are associated with DOM elements, the problem of event identification is

related to unique identification of DOM elements. This is challenging since it is difficult

to identify a single solution that would work for all applications. One may suggest using

the path of an element from the root node in the DOM tree as an identifier, but this path

changes if the place of an element changes in the tree. Similarly, one may be tempted

to use the id attributes of the DOM elements, but this is not a complete solution on its

own. This is because there can be elements with no id assigned. Moreover, although the

ids of the elements in a DOM are supposed to be unique, there is no mechanism to force

this. It is still possible to assign the same id to multiple elements in the same DOM.

Also, there is no requirement for ids to be consistent across different DOMs. Generating

the event identifier based on a combination of information about an element such as the

values of some selected attributes, the number of attributes and the element type can

be possible, but in this case the question of which attributes to include/exclude becomes

important.

Like DOM equivalence, event identification should be considered independent of the

crawling strategy since a strategy works with any appropriate event identification mech-

anism.

2.5 Intermediate States

In [16], Benjamin points to the notion of intermediates states caused by the event ex-

ecutions that make AJAX requests. When an event is executed, the crawler usually

considers only the state before the event execution and the state reached after the event

execution. However, when an event makes an AJAX call, the application actually may

go through at least three states: the state before the event execution, the state after the

AJAX request is made but before the response is processed completely, and the state after

the AJAX response is processed. The number of intermediate states may increase when

multiple AJAX requests interleave. Although we do not capture intermediate states in

our crawler, it can be useful to consider such states for security testing.

Challenges and Assumptions 21

2.6 Conclusion

In this chapter, we explained our working assumptions for building models of RIAs.

These are the assumptions that the application is deterministic from the point of view of

the crawler and that the crawler is provided with a set of user inputs to be used during

the crawl. Although a limiting one, the determinism assumption is a common assumption

made in all related works, which are surveyed in the next chapter. The selection of user

inputs to be used during the crawl is not addressed in this thesis.

In addition, we have explained the challenges of determining equivalent DOMs, iden-

tifying events and the intermediate states caused by AJAX requests. The algorithms

used in our crawler to address the first two of these challenges are explained in Chapter

6. Currently, the intermediate states are not captured by our crawler.

Chapter 3

Literature Review

3.1 Introduction

Crawling traditional applications is a well-studied problem with many proposed solutions.

The research on traditional crawling goes beyond the basic task of discovering pages;

many different research areas are explored, such as defining page importance metrics,

maintaining content freshness, politeness, distributed crawling and so on. However, the

research on crawling RIAs is more recent and still tries to address the fundamental

problem of discovering pages. The majority of the published works on crawling RIAs

use one of the standard strategies (Breadth-First and Depth-First); however, these are

not efficient strategies for crawling RIAs for the reasons explained previously (in Section

1.3.6).

In Section 3.2, we present an overview of the concepts introduced by the research on

crawling traditional web applications . In Section 3.3, we survey the existing research on

crawling RIAs and related problems.

3.2 Traditional Crawling

For traditional crawling, Olston and Najork provide a survey [59]. In this section, we

briefly present some of the important research areas related to traditional crawling.

22

Literature Review 23

3.2.1 Crawling Strategies (URL Ordering)

Crawling strategies for traditional crawlers determine an effective crawl ordering for the

discovered URLs. That means “important” pages should be downloaded first. Of course,

the importance of a page may depend on the purpose of crawling. For example, in the

case of “scoped crawling” [59], the aim is to find the pages that are related to a particular

category such as a topic (pages about gardening), a language (pages that are in a given

language), a geographical location and so on. In these cases, the importance metric for

the crawl also depends on the scope.

For general purpose crawling, a commonly used importance metric is PageRank [61].

PageRank is a connectivity-based metric that defines the importance of a page recursively.

The PageRank of a page P is computed based on the PageRank values of the pages that

contain links to P . P ’s importance is higher if many important pages contain links to

P . PageRank is also used to measure the effectiveness of crawling strategies. A strategy

is said to be more effective if it downloads the pages that have high PageRank values

earlier in the crawl.

Some of the general purpose crawling strategies for traditional crawling are the fol-

lowing:

• Breadth-First Strategy: URLs are explored in a breadth-first manner: URLs are

visited in the order they are discovered. The biggest advantage of the Breadth-First

strategy is its simplicity.

• Back-Link Count: In this strategy, the next URL to explore is the one that has

the most incoming links among the pages that are already downloaded [25]. This

strategy uses the number of incoming links of a page as a simple estimation of its

PageRank.

• Partial PageRank: This strategy is based on the estimation of the PageRank values

of unexplored URLs based on the discovered pages so far. The next URL to explore

is the one with highest PageRank in the partial model.

Authors of [25] presented experiments showing that the Partial PageRank strategy

is more effective than the other two. In [57], another study is presented using a larger

dataset to see the effectiveness of Breadth-First strategy (but without comparing with the

other strategies). They claimed that Breadth-First is able to find the important pages

first with feasible computational cost since continuously calculating Partial PageRank

Literature Review 24

during the crawl could be infeasible for large datasets. To address this issue an online

approximation algorithm is proposed in [1].

We would like to state that, except for the Breadth-First, the mentioned strategies

do not make much sense when they are applied directly to RIAs. This is because, these

strategies are based on the assumption that any page can be referenced from any other

page on the Web. In RIAs, except for the initial state, the states that are reached only

by event executions are not referenced from other pages on the Web.

3.2.2 Page Freshness

Another consideration in crawling is maintaining the freshness of the discovered pages.

That is, once pages are discovered; revisiting the discovered pages periodically helps

keeping the content up-to-date. Page revisits are also useful to detect removed or added

links; this reveals the removed pages and leads to discovery of new pages that may remain

unknown otherwise. In addition to the crawling strategy, traditional crawlers often have

a page revisit strategy that decides how often a page should be revisited.

There are studies that aims at maximizing the average freshness of a collection of

pages [28, 24]. Solving this problem requires to solve 3 sub-problems [59]; 1) Deciding

on a statistical model that estimates the change frequency of each page, 2) Deciding

on target re-visitation frequencies for each page, given the download rate of the crawler

(how many pages crawler can download in a second), 3) Deciding on the re-visitation

schedule for the pages such that the target re-visitation frequencies can be realized as

much as possible.

Of course, a freshness metric is also required. For example, [28, 24] studied the

problem under a binary freshness metric where a page is either fresh or not. Authors

in [24] also introduced a temporal (continuous) freshness metric where the freshness of

a page is evaluated based on the amount of time passed since the first change that has

caused the cached copy to become out-dated. In this latter model, the more the cached

page remains different from the live page, the less fresh it becomes.

It should be noted that page freshness is not exactly related to obtaining a model

of an application. Page freshness is mostly important for search engines to increase the

quality of search results by indexing the latest content.

Literature Review 25

3.2.3 Politeness

Since crawlers are automated tools, they are capable of generating large number of re-

quests in a short amount of time. If care is not taken, the high rate of requests sent to

a web server degrades the performance of the server for the regular users. These may

even be considered a denial-of-service attack 1 by the server and the crawler’s access can

be blocked as a result.

Overloading a server with high rate of requests is regarded as being “impolite” and

crawlers often apply a politeness policy to avoid this. A common approach is to put a

delay between successive requests to the same server [59]. Some of the works use a fixed

delay such as 10 seconds in [24] and 30 seconds in [13], whereas the authors of [57] use

an adaptive approach where the delay is chosen to be proportional to the time it took to

download the last page from the server. With the adaptive delay approach, the servers

with poor performance are given longer delays.

An additional measure to increase politeness is the robot exclusion method [45]. In

this method, a publicly accessible file is used by the websites to specify what pages

crawlers are allowed to download. Thus, limiting the load created by the crawlers. Also,

in the case of page revisits for freshness, the “if-modified-since” HTTP header is often

used to generate conditional requests such that the server sends the requested page only

if the page has changed since the time provided in the header.

Politeness is an important issue when crawling applications on public domains, and

this is usually done by search engines to index content. However, politeness is usually

not a big concern when building a model of the application for testing since it is often

possible to crawl an offline instance of the application that is dedicated to testing.

3.2.4 Distributed Crawling

For applications that have a large number of pages (or for Web crawling), using a single

process for crawling does not provide enough download rate. The research on distributed

crawling of traditional applications aims at increasing the download rate by using multiple

crawlers in parallel, while trying to minimize the coordination overhead between the

crawlers. The coordination of the crawlers is needed to prevent downloading the same

page by multiple crawlers.

Distribution of the work among multiple crawlers is usually done by partitioning the

URL space and assigning each crawler a different subset of URLs. In [23], two approaches

1A denial-of-service attack is defined as an attempt to make a resource unavailable to its users.

Literature Review 26

for the assignment of the URLs to the crawlers are explained. The first approach is to

use dynamic assignment where a centralized coordinator decides during the crawl which

crawler is responsible for a URL. The second and more common approach is to use

static assignment where a hash function is used to map each URL to a crawler. This

partitioning could be done on different ways such as based on the host names or based

on the complete URLs [47]. The geographical locations of the crawlers can also be taken

into account for partitioning in order to assign a host to a crawler that is geographically

close to the host [36]. Another consideration for partitioning is to minimize the work

that needs to be redone if one of the crawlers disappears or a new one joins [20].

Since these partitioning mechanisms rely on URLs, they will not be effective enough

for distributing the work when crawling a RIA. It is normal to expect that a RIA has

few URLs and under each URL many pages can be reached by executing events. New

partitioning algorithms are needed in order to efficiently crawl a RIA in a distributed

manner.

3.2.5 Eliminating Redundant and Non-Relevant Content

Sometimes, a page in a web application might be addressed by more than one URL. There

are several reasons that may cause this redundancy, such as using URL redirections,

adding session identifiers to URLs to keep track of user sessions (URL-rewriting method),

having multiple DNS names for the same server, or URL parameters that change how

the page looks without changing the content. It is beneficial for a crawler to detect such

URLs that lead to identical (or very similar) pages before downloading their content.

There has been some research proposing techniques to detect such URLs [14, 29, 2].

These techniques examine the web server logs (or previous crawl logs) and try to learn

the rules that can be used to convert each URL to a normalized form. The crawler can

then use these rules to detect and eliminate redundant URLs.

A related area is to detect pages that are almost identical among downloaded pages,

so called near-duplicate web documents (see [46] for a survey). Near-duplicate web

documents are documents that are exactly the same in terms of their main content

but differ in small portion of the documents, such as advertisements, timestamps and

counters. The main motivations for this research are (a) increasing the quality of content

searching and (b) reducing space requirements of search engines. Although it is a valid

question to ask if these methods could be used to improve DOM equivalence relations

for RIA crawling, the answer is not always positive. Most of these methods work in

Literature Review 27

batch mode (once documents have already been discovered) and may not be efficient

enough for the use during crawling. Also, these methods are based on calculating a

similarity measure between two documents; hence, they are not equivalence relations in

the mathematical sense.

In [27], Choudhary et al. present a technique to detect non-relevant content, such

as advertisements and timestamps, by loading the page twice and comparing the two

documents. The parts that have changed between the two loads are likely to be non-

relevant. In addition, they propose to use a same technique to detect session identifiers

in URLs.

3.3 RIA Crawling

Although limited, there has been some research focusing on crawling of RIAs. Except

our research, the main body of work related to crawling RIAs originates from three main

sources: a research group in ETH Zurich [33, 51, 38], the research group developing the

tool called Crawljax [53, 55], and the research group of Amalfitano et al. [4, 6, 5, 7]. The

research from ETH focuses on making AJAX applications searchable by indexing their

content. The tool Crawljax aims at crawling and taking a static snapshot of each AJAX

state for indexing and testing. Amalfitano et al. use execution traces obtained from

AJAX applications for automated testing. Below, we give a summary of the techniques

used in these works as well as other related work.

3.3.1 Crawling Strategy

To our knowledge, there has not been much attention on the efficiency of crawling strate-

gies. Except for the model-based crawling strategies introduced by our research group

and the greedy strategy introduced in [62], the existing approaches use either a Breadth-

First or a Depth-First crawling strategy. For this reason, they are limited in terms of

strategy efficiency.

In [33, 51, 38], the Breadth-First crawling strategy is used. As an optimization, they

propose to reduce the communication costs of the crawler by caching the JavaScript

function calls (together with actual parameters) that result in AJAX requests and the

response received from the server. If a function call with the same actual parameters is

made in the future, the cached response is used, instead of making a new AJAX call.

Crawljax [53, 55] extracts a model of the application using a variation of the Depth-

Literature Review 28

First strategy. Its default strategy only explores a subset of the events in each state.

This strategy explores an event only from the state where the event is first encountered.

The event is not explored on the subsequently discovered states. This default strategy

may not find all the states, since executing a fixed event from different states may lead

to different states. However, Crawljax can also be configured to explore every enabled

event at each state; in that case, its strategy becomes the standard Depth-First crawling

strategy.

Amalfitano et al. [4, 6, 5] focus on modeling and testing RIAs using execution

traces. Their initial work [4] uses execution traces obtained from user-sessions (a manual

method). Once the traces are obtained, they are analyzed and an FSM model is formed

by grouping together the equivalent user interfaces according to an equivalence relation.

In a later paper [6], they introduced a tool, called CrawlRIA, which automatically gen-

erates execution traces using a Depth-First strategy. That is, starting from the initial

state, events are executed in a depth-first manner until a DOM that is equivalent to a

previously visited DOM is reached. Then, the sequence of states and events is stored

as a trace in a database, and after a reset, the crawl continues from the initial state to

record another trace. These automatically generated traces are later used to form an

FSM model using the same technique that is used in [4] for user-generated traces.

In [18, 16], Benjamin et al. present the initial version of the first model-based crawling

strategy: the Hypercube strategy. This strategy makes predictions by initially assuming

the model of the application to be a hypercube structure. This initial version of the

strategy has performance drawbacks which prevent it to be applicable even when the

number of events in the initial state is as few as 20. Part of this thesis presents a new

strategy that uses the same assumptions to make predictions but can be run without any

performance issues. In [26], another model-based strategy, called the Menu strategy, is

introduced. This strategy is optimized for the case when all instances of the same event

lead to the same state (an overview of this strategy can be found in Section 5.2).

In [62], the authors suggested to use a greedy strategy. That is, the strategy is to

explore an event from the current state if there is an unexplored event. If the current state

has no unexplored event, the crawler transfers to the closest state with an unexplored

event. They also suggested two other variations of this strategy. In these variations,

instead of the closest state, the most recently discovered state and the state closest to

the initial state are chosen when there is not any event to explore from the current

state. They experimented with this strategy on simple test applications using different

combinations of navigation styles to navigate a sequence of ordered pages. The navigation

Literature Review 29

styles used are previous and next events, events leading to a few of the preceding and

succeeding pages from the current page, as well as the events that lead to the first and last

page. They concluded that all three variations of the strategy have similar performance

in terms of the total number of event executions to finish the crawl.

3.3.2 DOM Equivalence and Comparison

In [33, 51, 38], the equality is used as the DOM equivalence method. Two states compared

based on “the hash value of the full serialized DOM” [38]. They admit that the equality

is too strict for DOM equivalence and may lead to too many states being produced.

Crawljax [53] uses an edit distance (the number of operations that is needed to change

one DOM to the other, the so-called Levenstein distance) to decide if the current DOM

corresponds to a different state than the previous one. If the distance is below some

given threshold then the current DOM is considered equivalent to the previous one.

Otherwise, the current DOM is hashed and its hash value is compared to the hash values

of the already discovered states. Since the notion of distance is not transitive, it is not

an equivalence relation in the mathematical sense. For this reason, using a distance in

this way has the problem of incorrectly grouping together the states whose distance is

actually above the given threshold. But, in a later paper [55], to decide if a new state is

reached, the current DOM is compared with all the previously discovered states’ DOMs

using the mentioned distance heuristic. If the distance of the current DOM from each

seen DOM is above the threshold, then the current DOM is considered as a new state.

Although this solves the mentioned problem with the previous approach, this method

may not be as efficient since it requires to store all the discovered DOMs and compute

the distance of the current DOM to each of them.

In [5], Amalfitano et al. proposed DOM equivalence relations based on comparing

the set of elements in two DOMs. According to this method, two DOMs are equivalents

if both contain the same set of elements. This inclusion is checked based on the indexed

paths of the elements, event types and event handlers of the elements. They have also

introduced two variations of this relation. In the first variation, only visible elements are

considered, and in the other variation, the index requirement for the paths is removed.

3.3.3 Parallel Crawling

To date, we are not aware of any published algorithm for distributed crawling of RIAs.

Some authors extended their existing sequential algorithms by running several crawling

Literature Review 30

instances in parallel. In [51], the authors propose using multiple crawlers on RIAs (or on

Web crawling) that use hyperlinks together with events for navigation. The suggested

method first applies traditional crawling to find the URLs in the application. After

traditional crawling terminates, the set of discovered URLs are partitioned and assigned

to event-based crawling processes that run independent of each other using their Breadth-

First strategy. Since each URL is crawled independently, there is no communication

between the crawlers.

In [55], the authors of Crawljax proposed using multiple threads for speeding up

event-based crawling of a single URL application. The crawling process starts with a

single thread (that uses a Depth-First strategy). When a thread discovers a state with

more than one event, new threads are initiated that will start the exploration from

the discovered state and follow one of the unexplored events from there (again using a

Depth-First strategy).

3.3.4 Automated Testing

The Crawljax group also published research regarding the testing of AJAX applications:

[54] focuses on invariant-based testing, [19] focuses on the security testing of interaction

among web widgets, and [64] focuses on the regression testing of AJAX applications.

In [6], Amalfitono et al. compared the effectiveness of different methods to obtain

execution traces (user generated, crawler generated and the combination of the two),

and the existing test case reduction techniques based on measures such as state cover-

age, transition coverage and detecting JavaScript faults. In [7], the same authors used

invariant-based testing approach to detect faults visible on the user-interface (such as

invalid HTML, broken links, and unsatisfied accessibility requirements), in addition to

JavaScript faults (crashes) which may not visible on the user-interface but cause faulty

behaviour.

In [50], Marchetto et al. use a state-based testing approach based on a FSM model of

the application. Their model construction method uses static analysis of the JavaScript

code and dynamic analysis of user session traces. They try to reduce the size of the

models using abstraction of the DOM states, rather than using DOM states directly in

the model, and this may require some manual activity to ensure correctness. Based on

this model, they produce test sequences that contain “semantically interacting events”.

(Two events are semantically interacting if their execution order changes the outcome.)

In [49], they proposed search-based test sequence generation using hill-climbing, rather

Literature Review 31

than exhaustively generating all the sequences up to some maximum length.

3.3.5 Ranking (Importance Metric)

In [38], the authors propose a ranking mechanism for the states in RIAs. The aim is

to assign an importance value to states to determine their rank in search results. The

proposed mechanism, called AjaxRank, is an adaptation of PageRank [61]. Similar to

PageRank, AjaxRank is connectivity-based, but instead of hyperlinks, the transitions

are considered. AjaxRank gives more importance to the initial state of the URL (since

it is the only state reachable from anywhere directly); hence, the states that are closer

to the initial state also get higher ranks.

In addition to ranking the results of a search query, the importance metrics for RIAs

can be useful for assessing the effectiveness of crawling strategies and help designing more

effective crawling strategies for RIAs.

3.3.6 Related Graph Problem

Based on our definition of efficiency, the problem of designing an efficient strategy for

RIAs can be considered as a graph exploration problem. That is, the aim is to visit every

node at least once in an “unknown” directed graph by minimizing the total sum of the

weights of the edges traversed. The offline version of this problem, when the graph is

known beforehand, is called the Asymmetric Traveling Salesman Problem (ATSP) which

is NP-Hard.

There are some approximation algorithms for different variations of the unknown

graph exploration problem [52, 31, 39, 37]. However, we do not know any which suits to

our case. Rather than trying to adapt these algorithms to our case, we design our own

algorithms for crawling RIAs since there would be no theoretical improvement. There

is no general algorithm with a constant competitive ratio2. The authors in [52, 31, 37]

consider undirected graphs, and in [37], it has been shown that the lower-bound on the

competitive ratio is n2 for undirected graphs where n is the number of nodes in the graph.

In [39], the authors consider directed graphs, but they make the following assumption:

when the agent (the crawler in our case) visits a node, it also knows the destinations of

the outgoing edges of the node. Since, when crawling a RIA, it is not possible to know

the destination of an unexplored event beforehand, this assumption is not valid in our

2Competitive ratio is the ratio of the cost of the solution produced by an approximation algorithm

and the cost of an optimal solution.

Literature Review 32

case. When this assumption is made, it has been shown that the lower bound on the

competitive ratio for a deterministic algorithm is (n− 1) [39].

3.4 Conclusion

The problem of traditional crawling is well-studied and many solutions have been pro-

posed regarding different aspects of crawling. Discovering the pages in a traditional

application is not a difficult task since even a simple Breadth-First strategy is efficient

enough. For traditional applications, the effectiveness of crawling strategies are studied

which means to discover important pages first. In addition, techniques are proposed

to address the issues of maintaining page freshness and eliminating duplicate/irrelevant

content. The concept of politeness is used to prevent the crawler from overloading a pub-

lic web server with the large amount of requests generated during the crawl. Distributed

crawling algorithms are proposed to reduce the crawling time by using multiple crawlers.

Compared with the research on crawling traditional applications, the research on

crawling RIAs is very recent. The problem of building a model for a RIA has still not

been addressed completely. Although this problem is not solved efficiently by using a

Depth-First or a Breadth-First strategy, these are the most common strategies used so

far in the existing research.

Chapter 4

Model-based Crawling

4.1 Introduction

In event-based crawling, the aim is to start from a given URL and extract a model of

the states that are reachable from the initial state of the URL through event executions.

Our goal is to extract this model “efficiently”, that is, to find all the states as quickly

as possible, while being guaranteed that every state will eventually be found (under

our working assumptions). Without any knowledge of the RIA being crawled, it seems

difficult to devise a general efficient strategy. For example, the Breadth-First and the

Depth-First strategies are guaranteed to discover a complete model when given enough

time, but they are usually not very efficient as we have explained out in Section 1.3.6.

One of their drawbacks is the lack of a mechanism to predict which events are more likely

to discover a new state.

To be efficient, a crawling strategy could use an anticipation of the behavior of the

application being crawled. If we can identify some general patterns that we anticipate

will be found in the actual models of the RIAs being crawled, then these patterns can

be used to forecast the model of the application. This idea is the basis of model-based

crawling, which is the methodology we use to design efficient crawling strategies for RIAs.

In this chapter, we explain model-based crawling and present the Hypercube strategy

as the first example of model-based crawling. In Section 4.2, we explain the concepts of

model-based crawling. In Section 4.3, we present the model for the Hypercube strategy

and give an overview of the initial version of the strategy. In Section 4.4, we introduce an

improved version of the Hypercube strategy which overcomes the practical shortcomings

of the initial strategy. In Section 4.5, we conclude the chapter.

33

Model-based Crawling 34

4.2 Model-based Crawling

4.2.1 Meta-Model

We use the term meta-model to represent a class of applications that share certain be-

havioral patterns. A meta-model, in our context, is a model defining the characteristics

of a set of RIA models. The RIA models that follow the characteristics of a meta-model

are the instances of the meta-model1. A meta-model is defined by specifying the general

characteristics of its instances. These characteristics usually capture the relations of the

events with the states and with the other events. For example, the characteristics may

provide an answer to questions such as: “Is executing a particular event going to lead to

a new state?”, “Is executing a particular event going to lead to a state where there is a

different set of events?” or “Which of the known states will be reached when a particular

event is explored?” and so on. In model-based crawling, a meta-model is used as a means

to anticipate the model of the application that is being crawled.

4.2.2 The Methodology

In model-based crawling, a strategy is designed based on a chosen meta-model. Such a

strategy uses the chosen meta-model as a guide for crawling. That is, we initially assume

that the application we are crawling is an instance of the chosen meta-model. Thus, the

strategy can be very efficient (possibly an optimal one) for crawling applications that

are instances of the chosen meta-model. But, this does not mean that applications that

are not instances of the chosen meta-model cannot be crawled. In fact, the actual RIA

will in practice almost never be a perfect match for the given meta-model. Model-based

crawling must account for the discrepancy between the anticipated model and the actual

model, allowing the strategy to adapt to the application being crawled.

To summarize, a strategy is designed in three steps:

1. A meta-model is chosen.

2. A strategy for crawling applications whose models follow the meta-model is de-

signed. Ideally, the strategy must be optimal if the actual model is a perfect match

1For example, the meta-model we explain in this chapter is called Hypercube meta-model. There

can be different instances of the Hypercube meta-model. The difference would be in the dimensions of

the hypercube and in the set of events. The Hypercube meta-model represents the general concept that

all the instances of the Hypercube meta-model share: being a hypercube.

Model-based Crawling 35

for the meta-model.

3. Steps to take are specified in case the application that is crawled deviates from the

meta-model.

Actual Model vs. Anticipated Model

In the context of model-based crawling, we often talk about two models: the actual

model of the application and the model we are anticipating to find according to the

chosen meta-model.

Actual Model : The actual model of a given application is the model discovered

during the crawl. As defined in Section 1.3.5, we represent the actual model

as a graph G = (V,E).

Anticipated Model : The anticipated model of the application is the model

we are anticipating to discover based on the meta-model characteristics. We

represent the anticipated model also as the graph, written G′ = (V ′, E ′).

In model-based crawling, the mechanism for handling the violations of the meta-model

always makes sure that the anticipated model conforms to the actual model discovered

so far. Hence, the actual model is a sub-graph of the anticipated model. The difference

between the two are the anticipated states yet to be discovered V A and unexplored

anticipated transitions EA. (i.e., V ′ = V ∪ V A and E ′ = E ∪ EA)

Choosing a Meta-Model

A crucial step in model-based crawling is to find a meta-model that will allow us to

anticipate the behavior of the application as accurately as possible. It is a challenge to

find a good meta-model that is generic enough to cover most RIAs, but at the same time,

specific enough to allow making some valid anticipations. To find a good meta-model,

common behaviors that apply to majority of RIAs can be observed and experiments with

different meta-models can be done. We discuss a possible solution to the challenge of

finding good meta-models as part of the future works in Chapter 8.

Designing an Optimized Strategy

When designing a strategy for a given meta-model, we often use a two-phase approach:

Model-based Crawling 36

• The State Exploration Phase is the first phase that aims at discovering all the

states that are anticipated by the meta-model as efficiently as possible. Given the

extracted model so far and assuming that the unexplored parts of the application

will follow the meta-model anticipations, it is possible to know whether there are

any more states to be discovered. Once, based on these anticipations, it is decided

that there is not any new state to discover, the strategy moves on to the second

phase.

• The Transition Exploration Phase is the second phase that explores the events that

has not been explored yet. In the state exploration phase, the crawling strategy

does not necessarily explore every event; in this first phase, the strategy only ex-

plores the events which it anticipates will help discovering new states. However, we

cannot be sure that we have discovered all the states unless each event is explored.

If a new state is discovered in the transition exploration phase or the strategy an-

ticipates that more states can be discovered, then the strategy switches back to the

state exploration phase.

Handling Violations

During the crawl, whenever a discrepancy between the actual model and the anticipated

model is detected, the anticipated model and the strategy are revised according to the

actual model uncovered so far. There may be different ways to achieve this, but one

simple and consistent mechanism is to assume that the characteristics of the meta-model

will still be valid for the unexplored parts of the application. So, using the same charac-

teristics, a strategy can be obtained for the unexplored parts as it was done initially.

4.3 Hypercube Meta-Model and the Initial Strategy

In the following, we present the Hypercube meta-model and an optimal strategy to crawl

the instances of this meta-model. The idea of using hypercube as a meta-model for

crawling RIAs was introduced in [17]. In [16, 18], a complete crawling strategy based on

the hypercube meta-model was given. However, in this initial version of the strategy, the

actions that should be taken has to be precomputed ahead of time. The pre-computation

overhead prevented this initial algorithm to be applicable even for very small applications.

In this thesis, we present a new algorithm that addresses this issue completely.

Model-based Crawling 37

In this section, we first give an outline of the Hypercube meta-model and the initial

version of the Hypercube strategy. In the next section, we explain the new algorithm and

prove that this strategy is an optimal crawling strategy for the Hypercube meta-model.

4.3.1 Hypercube Meta-Model

As its name suggests, the Hypercube meta-model is the class of models that have a

hypercube structure. The Hypercube meta-model is formed based on two assumptions:

• A1: The events that are enabled in a state are pair-wise independent. That is, in

a state with a set of enabled events, executing a given subset of these events leads

to the same destination state regardless of the order of their execution.

• A2: When an event e is executed in a state s, the set of events that are enabled in

the reached state is the same as the events enabled in s minus e.

These assumptions reflect the anticipation that executing an event does not affect (enable

or disable) other events and executing a set of events from the same state in different

orders is likely to lead to the same state. Based on these assumptions, the initial an-

ticipated model for an application whose initial state has n events is a hypercube of

dimension n. Figure 4.1 shows a hypercube of dimension 4. The vertex at the bottom of

the hypercube represents the initial state with four events {e1, e2, e3, e4} enabled. Ini-

tially, the remaining vertices represent the anticipated states. Each vertex is labeled by

the events enabled in the state (for readability not all the labels are shown). Each edge

is directed from the lower incident vertex to the upper incident vertex and represents an

anticipated transition of the application initially.

In a hypercube of dimension n, there are 2n states and n × 2n−1 transitions. The

height of a state in the hypercube is the number of transitions that must be traversed to

reach it from the initial state. The set of states in a hypercube of dimension n can be

partitioned as {L0, L1, L2, . . . , Ln} where Li is the set of states of height i. We call Li

the “level i” of the hypercube. L0, Ln and Lbn/2c are called the bottom, the top and the

middle of the hypercube, respectively. We refer to all levels higher than the middle as the

“upper half” and the levels lower than the middle as the “lower half” of the hypercube.

4.3.2 Violations of the Hypercube Assumptions

When the RIA does not fully follow the hypercube meta-model, we have “violations”

of the hypercube assumptions. With this meta-model, there are four possible violations

Model-based Crawling 38

Figure 4.1: A Hypercube of Dimension 4

which are not mutually exclusive. The first meta-model assumption A1 can be violated

in 2 ways:

• Unexpected Split: In this case, after executing an event we expect to reach a state

that has already been visited, but we actually reach a new state.

• Unexpected Merge: In this case, after executing an event we unexpectedly reach a

known state (i.e., not the expected known state).

A2 can also be violated in 2 ways:

• Appearing Events: There are some enabled events that were not expected to be

enabled in the reached state.

• Disappearing Events: Some events that were expected to be enabled in the reached

state are not enabled.

As explained before, we need to have an efficient strategy that handles all four violations.

4.3.3 The Initial Strategy

For the hypercube meta-model, Benjamin et al. presented an initial strategy [16, 18].

We summarize briefly this initial algorithm and explain its shortcomings addressed in

Model-based Crawling 39

Section 4.4. These algorithms use the characterization of the hypercube as a partially

ordered set to produce an efficient strategy.

A hypercube is the partially ordered set of all subsets of n elements ordered by in-

clusion. In our case, each subset of the n events found in the initial state represents a

state in the hypercube. This characterization is useful for generating an optimal state

exploration strategy for a hypercube model. In a partially ordered set, a set of pairwise

comparable elements is called a chain. Thus, each directed path in the hypercube is a

chain. A set of chains covering every element of the order is known as a chain decom-

position of the order. A Minimum Chain Decomposition (MCD) of the order is a chain

decomposition of minimum cardinality (see [10] for an overview of concepts). For the

hypercube model, a minimum chain decomposition is a set A of paths that contain every

state in the hypercube such that A is of minimal cardinality with that property (i.e.,

following an MCD of an hypercube allows us to visit every state in the hypercube using

the minimum number of events and the minimum number of resets). In [30], Dilworth

proved that the cardinality of any minimal chain decomposition is equal to the width of

the order, that is, the cardinality of a largest subset whose elements are pairwise non-

comparable. In a hypercube of dimension n, the width is the number of states in the

middle level which is
(

n
bn/2c

)
. A minimum chain decomposition algorithm that can also

be used for hypercubes is given in [21]. Each chain produced by this algorithm is of

the form C =< vi, vi+1, . . . , vi+k > where vi is a state at level i. In this decomposition,

each chain is a unique path in the hypercube, but it does not necessarily start from the

bottom of the hypercube. In a chain C, the state at the lowest level is called the “chain

starter state” or the “bottom” of C. The set of MCD chains produced for a hypercube

of dimension 4 (shown in Figure 4.1) is the following

1. < {e1, e2, e3, e4}, {e2, e3, e4}, {e3, e4}, {e4}, {} >

2. < {e1, e2, e3}, {e2, e3}, {e3} >

3. < {e1, e2, e4}, {e2, e4}, {e2} >

4. < {e1, e2} >

5. < {e1, e3, e4}, {e1, e4}, {e1} >

6. < {e1, e3} >

Model-based Crawling 40

By definition, an MCD provides a complete coverage of the states of a hypercube in

an optimal way, that is, using the minimum number of events and the minimum number

of resets. Thus, for the state exploration phase, it is enough to generate an MCD of

the hypercube. However, an MCD does not cover all the transitions of the hypercube.

In the initial hypercube strategy, we devised another algorithm that generates a larger

set of chains, called Minimum Transition Coverage (MTC), to cover all the transitions

in a hypercube in an optimal way. Since MCD chains already traverses some of the

transitions, the MTC algorithm can be constrained with an already generated MCD so

that the set of MTC chains contains every MCD chain. The number of paths in an MTC

is
(

n
bn/2c

)
×dn/2e, which is the number of transitions leaving the middle level.

The combination of MCD and MTC provides an optimal way of crawling a RIA that

perfectly follows the Hypercube meta-model. That is, for a hypercube, an MTC uses

the minimal number of resets and event executions to traverse each transition at least

once. Moreover, among MTC chains, the ones that contain the MCD chains are given

exploration priority. Thus, all the states of the hypercube are visited first, using the

minimal number of events and resets.

The initial algorithm also provides a revision procedure to update the existing set of

chains to handle the violations of the hypercube assumptions. The revision procedure

basically replaces the chains that become invalid and adds new chains if necessary.

An Example

To better explain the concepts of the anticipated model and the violations of the hy-

percube assumptions, we provide a simple example. The example details the partial

exploration of an example application whose model is shown in Figure 4.2. The initial

state of the application, s1, has three enabled events {e1, e2, e3} and there are 8 states

in total.

Figure 4.3 shows (partially) the steps taken by the Hypercube strategy to crawl the

application in Figure 4.2. Each diagram in Figure 4.3 shows the current anticipated

model: the solid nodes and edges show the actual discovered model, whereas dashed

nodes and edges belong to the anticipated model only.

The first diagram, 4.3.(1), shows the initial situation: the only discovered state is

s1 and the anticipated model is a hypercube of dimension 3 based on s1. The MTC

chains that are generated for crawling this hypercube are listed below. The highlighted

sequences are the MCD chains.

Model-based Crawling 41

Figure 4.2: Model of the Example Application

1. < {e1, e2, e3},{e2, e3},{e3},{} >

2. < {e1, e2, e3},{e1, e3},{e1}, {} >

3. < {e1, e2, e3},{e1, e2},{e2}, {} >

4. < {e1, e2, e3}, {e2, e3}, {e2} >

5. < {e1, e2, e3}, {e1, e3}, {e3} >

6. < {e1, e2, e3}, {e1, e2}, {e1} >

The Hypercube strategy starts with the execution of the first chain. This is shown in

diagrams 4.3.(1)-(4). In this example, the first chain is executed without any violations

and the states s1, s2, s3, s4 are discovered as anticipated.

4.3.(5) shows the situation after executing the first event (e2 from s1) of the second

chain. In this case, we were anticipating to reach a new state that has enabled events

{e1, e3}, but we have reached an already discovered state (s3) that has e3 as the only

enabled event. This is a violation of both A1 and A2 since we have an unexpected

merge and a disappearing event. Notice that, after this violation the anticipated model

is updated. The state we were expecting to reach is removed since this was the only way

to reach it in the model (This also means that the 5th chain is not valid anymore since

it was supposed to execute an event from the unreachable anticipated state. So, it has

to be removed as well). After this violation, we cannot continue with the current chain;

the strategy moves on to the third chain.

Model-based Crawling 42

4.3.(6) and 4.3.(7) show the execution of the first two events in the third chain. These

executions do not cause any violations. However, as shown in 4.3.(8), the last event in

the chain causes a violation. We were expecting to reach s4 by executing e1 from s6, but

we reached to a new state s7 with two enabled events {e4, e5}. This is a violation of both

A1 and A2 : it is an unexpected split and there are appearing/disappearing events in the

state reached. After this violation, the anticipated model is updated by adding a new

hypercube of dimension 2 based on s7. That means, new chains have to be computed

and added to the set of existing chains, while the current chain becomes invalid.

As the concepts of an anticipated model and the violations are visualized in Figure 4.3,

we do not show the further exploration steps that would be performed by the strategy,

until all the events are explored.

Shortcomings of the Initial Strategy

Although the initial algorithm is an optimal crawling strategy for applications that follow

the Hypercube meta-model, it is not a practical one. The reason is that it requires pre-

computing all the chains before the exploration. This is problematic since the anticipated

model has a size which is exponential in the number of events enabled in the bottom

state. For example, if we attempted to crawl a RIA that has 20 events on its initial page

(which is, in fact, a very small number), we could have not even started the exploration

since there might not be enough memory to generate the MTC chains (for 20 events,

1,847,560 chains need to be generated). Furthermore, if the application being crawled

happens not to fit the hypercube model, then this pre-computation is largely in vain. We

would be unable to crawl the RIA simply because we could not generate the strategy. In

addition, in case we actually managed to start crawling, maintaining the large number

of chains would be very difficult since we have to replace the chains that are not valid

anymore.

4.4 The New Hypercube Strategy

In order to execute the Hypercube strategy in an efficient manner, instead of generating

the whole strategy before the exploration, the decisions for the next actions can be made

on-the-fly, at the time we need them. For state exploration phase, what we need is the

ability to identify the successor of a state in its MCD chain. That is, for any state in

the hypercube, we need a way to calculate the event to execute to reach the next state

Model-based Crawling 43

Figure 4.3: (Partial) Crawling of the Example Application

Model-based Crawling 44

in the MCD chain. Then, we can execute an MCD chain step by step. The optimal

transition exploration for hypercube is also possible by a simple greedy approach. Since

there are no stored chains to maintain, the revision of the strategy is also easy in case of

violations. In the following, we detail this efficient execution of the Hypercube strategy

and provide algorithms for this purpose.

Algorithm 1 shows the global variables and the main body of the Hypercube strategy

which extracts a model for a given URL. The global variables are listed below.

• v1 is a vertex representing the initial state. We assume the method Load loads the

given URL and returns a vertex that represent the initial state.

• G = (V,E) is the extracted model, initially G = ({v1}, ∅).

• G′ = (V ′, E ′) is the anticipated model, initially a hypercube based on v1. The

anticipated model (which can be very large) is not actually constructed in memory.

It is merely a hypothetical graph that we use for explanation purposes. The struc-

ture of a hypercube allows us to know all the transitions from any state without

actually creating the anticipated model.

• vcurrent is a reference to the vertex representing the current state. It is updated

after each event execution.

• phase shows in which phase the crawling strategy is. It can have one of the three

possible values: stateExploration, transitionExploration or terminate. It is initial-

ized to stateExploration. Crawling continues until its value becomes terminate.

4.4.1 State Exploration Strategy

The optimal state exploration strategy for an hypercube is to follow an MCD of the

hypercube. However, we must do it without generating the chains in the MCD ahead of

time. The key to achieving this is the ability to determine the state that comes after the

current state in an MCD chain, without generating the chain beforehand. For an MCD,

we call the state that follows a given state v in the MCD chain as the MCD successor

of v and write MCDSuccessor(v). In addition to the successors, we also need to identify

from which state an MCD chain starts: the chain starter.

Model-based Crawling 45

Algorithm 1: The Hypercube Strategy
Input: url: the URL of the application to crawl.

Output: G = (V,E): the model of the application

global v1 := Load(url) ;

global V := {v1}, E := ∅ ;

global G′ := (V ′, E′) := A hypercube graph based on v1;

global vcurrent := v1;

global phase := stateExploration;

while phase ! = terminate do

if phase == stateExploration then
StateExploration();

else
TransitionExploration();

endif

endw

Identifying MCD Successors and Chain Starters

Two different approaches for calculating the MCDSuccessor function are presented in [3],

and [42]. (According to [43], both approaches yield the same decomposition that is also

produced by the algorithm given in [21]).

The approach explained in [42] is based on parenthesis matching and works as follows:

since each state in the hypercube is characterized by a subset of the set of events enabled

at the initial state ({e1, e2, . . . , en}), a possible representation of a state v in the hypercube

is a n-bits string representation x1x2 . . . xn ∈ {0, 1}n such that the bit xi is 0 if and only

if ei is enabled at v. To find MCDSuccessor(v), we use this bit string representation of

v. We regard each 0 as a left parenthesis and each 1 as a right parenthesis and match

the parenthesis in the traditional manner as shown in the Function MCDSuccessor(v).

The function keeps track of a set called IndexesOfUnmatchedZeros. The set is empty

initially and will contain the indexes of the unmatched zeros at the end. The function

starts from the leftmost bit x1 and scans the string such that when a 0 bit is encountered,

the index of the 0 bit is added temporarily to the set. When a 1 bit is encountered, it

is matched with the rightmost unmatched 0 bit to the 1 bit’s left. This is achieved by

removing from the set the maximum value. At the end, if the set is empty (i.e., all 0’s

are matched), then v has no successor. That means, v is the last state in the MCD chain.

Otherwise, the minimum index stored in the set is the index of the leftmost unmatched

Model-based Crawling 46

0 bit. We obtain the bit string of MCDSuccessor(v) by flipping the bit at that position.

That means, if i is this minimum index then we have to execute event ei to reach the

MCDSuccessor(v) from v. Using this simple method, an MCD chain can be followed

without pre-computation. In addition, the starting states of these MCD chains (i.e.,

chain starters) are the states whose bit strings do not contain any unmatched 1 bits.

For instance, if the bit string representation of a state v is 1100110001, then we have

the following parenthesis representation

))(())((()

1100110001

where the leftmost unmatched 0 (left-parenthesis) is the seventh bit, so we have to execute

the corresponding event (i.e., the seventh event among the events enabled at the bottom

of the hypercube) from v to reach the successor of v, MCDSuccessor(v) = 1100111001.

In addition, since the bit string of v contains unmatched 1’s (the first and the second

bits), v is not a chain starter state.

Function MCDSuccessor(v)
Input: v: a vertex

Output: the MCD successor of v

IndexesOfUnmatchedZeros = ∅;
Let x1x2 . . . xn ∈ {0, 1}n be the bit string representation of v;

i := 1;

while i ≤ n do

if xi == 0 then
IndexesOfUnmatchedZeros := IndexesOfUnmatchedZeros ∪ i;

else
maxIndex := MAX(IndexesOfUnmatchedZeros);

IndexesOfUnmatchedZeros := IndexesOfUnmatchedZeros \maxIndex ;

endif

endw

if IndexesOfUnmatchedZeros == ∅ then
return nil ;

else
minIndex := MIN(IndexesOfUnmatchedZeros);

bitStringSuccessor := FlipTheBitAt(x1x2 . . . xn,minIndex));

return the vertex corresponding to bitStringSuccessor ;

endif

Model-based Crawling 47

Execution of the State Exploration Phase

The Procedure StateExploration describes the execution of the state exploration phase.

In this phase, we follow the MCD chains one by one using the successor function described

above. In order to execute an MCD chain, we first need to find a chain starter state

whose MCD chain has not been executed yet. At the very beginning of the crawl, since

the initial state is a chain starter state, we can immediately start by executing the

corresponding MCD chain. But, if the current state is not a chain starter, we find a

path from the current state to the closest chain starter that we have not tried to reach

before (notice that, the chain starter state is an anticipated state, so it is possible that

the chain starter we are expecting to reach does not exist)2. We use the path to attempt

to reach to the chain starter. (To execute a path, the function ExecutePath is used.

This function, which will be given later, executes the events in the path one after the

other, if needed updates the actual and anticipated models. If a violation is detected

during the execution of the path, ExecutePath returns with value false.) If there is no

violation, we do reach the chain starter and we start the execution of the corresponding

MCD chain. If a violation occurs, we stop the execution of the current chain (which is

not valid anymore) and start looking for another chain starter. The state exploration

phase finishes when we have tried to execute all MCD chains for the current anticipated

model.

Preserving Optimality When executing this strategy, there are some additional steps

that we must take in order to preserve the optimality of the Hypercube strategy. First

of all, during the state exploration phase, we explore more than the MCD chains. In

addition to the MCD chains, whenever possible, we try to traverse unexplored transitions

on the path used to reach a chain starter (rather than using already explored transitions).

Also, when we come to the end of an MCD chain, we continue exploring transitions,

rather than immediately starting the next MCD chain. In other words, the MCD chains

are extended towards the bottom and the top using unexplored transitions. Otherwise,

these transitions that we have not explored during state exploration while we had the

opportunity will cause at least one extra event execution and possibly one extra reset.

Moreover, when constructing a path P , we want it to be in the following form: P = PPPS

where PP is a (possibly empty) prefix path that consists of already explored transitions

2If there are multiple such chain starters, we choose the one whose MCD chain is longer. This is

because, a longer MCD chain means more anticipated states to discover. In an n dimensional hypercube,

the length of an MCD chain whose chain starter is at level l is given by the formula: n− 2× l.

Model-based Crawling 48

Procedure StateExploration

while there is a chain starter that we have not yet attempted to reach do
Let P be a path in G′ from vcurrent to the closest such chain starter;

// try to reach to the chain starter

if ExecutePath(P) == TRUE then

// execute the MCD chain

vsuccessor := MCDSuccessor(vcurrent);

while vsuccessor ! = nil do

if ExecutePath((vcurrent , vsuccessor)) == FALSE then
break;

else
vsuccessor := MCDSuccessor(vsuccessor);

endif

endw

// if the end of chain is reached, extend the chain

if vsuccessor == nil then

while there is an unexplored transition (vcurrent , v
′; e) do

// explore the event and check for violation

if ExecutePath((vcurrent , v
′; e)) == FALSE then

break;

endif

endw

endif

endif

endw

phase := transitionExploration;

Model-based Crawling 49

and PS is a path that contains only previously unexplored transitions. That means,

in a path, all the transitions that follow the first unexplored transition should also be

unexplored. In particular, the paths that are used to reach a chain starter during the

state exploration phase should contain, as much as possible, unexplored transitions and

there should not be an already explored transition following an unexplored transition.

Based on the same principle, the paths that extend MCD chain toward the top and

the paths taken during the transition exploration (the phase explained next) should end

when a state without unexplored transitions is reached. In that case, we should go back

to the bottom of the hypercube and start exploring a new chain.

4.4.2 Transition Exploration Phase

The Procedure TransitionExploration describes the execution of the transition explo-

ration phase. In this phase, we use a simple greedy strategy to explore the remaining

unexplored events. The strategy is to always explore an unexplored transition that is

closest to the current state. That is, we search in the actual model the shortest transfer

path from the current state to a state which has an unexplored event. We reach to that

state using the path, execute the unexplored event, and check if the state that is reached

violates hypercube assumptions. Any violation is handled as we explain next.

Procedure TransitionExploration

while phase == transitionExploration do

if there is an unexplored transition then
Let (v, v′; e) ∈ E′ be the closest unexplored transition to vcurrent ;

Let P be a path constructed by appending (v, v′; e) to a shortest path from

vcurrent to v;

ExecutePath(P);

else
phase := terminate;

endif

endw

The crawl terminates when all the enabled events at each discovered state are ex-

plored.

Model-based Crawling 50

4.4.3 Executing Events, Updating the Models and Handling

Violations

Function ExecutePath(P)
Input: P : a path to traverse

Output: FALSE if any hypercube assumption is violated, otherwise TRUE

if P requires reset then
vcurrent := Load(url);

endif

foreach transition (v, v′; e) ∈ P from the first to the last do
vcurrent := Execute(e);

if (v, v′; e) ∈ EA then // is this an event exploration?

if Update((v, v′; e)) == FALSE then
return FALSE ;

endif

endif

endfch

return TRUE ;

To execute transitions, we call the function ExecutePath. Given a path, the function

executes the sequence of events on the path, possibly after a reset. We assume that a

method called Execute executes the given event from the current state and returns a

vertex representing the state reached. That is, if the event execution leads to a known

state, Execute returns the vertex of the state. Otherwise, Execute creates and returns

a new vertex for the newly discovered state (we use the method Execute as a notational

convenience combining event execution and the DOM equivalence relation).

The path provided to ExecutePath may contain both anticipated transitions (i.e.,

not yet explored) and already explored transitions. The return value of ExecutePath

shows whether a violation of the hypercube assumptions is detected during the execution

of the path. If a violation is detected, the function returns immediately with value false.

After each explored transition, we must update the actual model, check for the vi-

olations of the hypercube assumptions, and if needed, update the anticipated model.

The function Update describes the mechanism to update the models and to handle the

violations. The returned value of the function is false when a violation is detected.

The function Update is given the transition that has just been explored. The function

adds this transition to the actual model. If a new state is reached, it also adds a new state

Model-based Crawling 51

to the actual model. Then, it checks for a violation. This is checked by the expression

vcurrent ! = v′. A violation is detected if the inequality holds. Here, we are checking the

inequality of two vertices: one representing the state reached, vcurrent (an actual state),

and the other, v′, representing the state that we were anticipating to reach. The latter

can be representing either an anticipated state or an actual state. The semantics of

the comparison is different in these cases. If v′ represents an actual state (i.e., we have

just explored a transition that was anticipated to connect two known states), then we

just check if the vertices represent different states to detect a violation. Otherwise, if v′

represents an anticipated state, then the inequality is satisfied only if the reached state is

not new or the enabled events on the new state do not satisfy the hypercube assumption

A2.

When there is a violation, we update the anticipated model, still assuming that the

hypercube assumptions (A1 and A2) remain valid for the unexplored parts of the appli-

cation. For this reason, if we unexpectedly reach a new state, we add a new (anticipated)

hypercube to the anticipated model. Notice that, in such a case the phase is reset to

stateExploration. In case of any violation, we have to remove the anticipated transition

and any unreachable anticipated states from the anticipated model (again, since the an-

ticipated model is a hypothetical graph, we do not actually remove anything in the real

implementation of the strategy.).

4.4.4 Complexity Analysis

The worst-case time complexity of the Hypercube strategy can be analyzed in terms

of the size of the actual model of the application, |E|, and the maximum number of

enabled events at a state, n (i.e., n is the maximum outdegree of the actual model G).

In the state exploration phase, we look for the chain stater state that is closest to the

current state. To find such a state, we start traversing the actual model built so far in

a Breadth-First manner (notice that, we are searching the graph in memory, we are not

executing any event). During the traversal, we consider whether any of the unexplored

transitions leads to a chain starter state. Checking if a transition leads to a chain starter

is done using the parenthesis matching method explained in Section 4.4.1. This method

requires to scan the bit string representation of a state having at most n bits and this

takes O(n) time. The number of unexplored transitions is at most |E|, so a traversal

to look for chain starter takes O(n× |E|). Since there can be at most |V | chain starter

states, this traversal is done at most |V | times. So, the total time spent looking for a

Model-based Crawling 52

Function Update((v, v′; e))

Input: (v, v′; e): the most recently explored transition

Output: FALSE if any hypercube assumption is violated, otherwise TRUE

E := E ∪ {(v, vcurrent ; e)} ; // add a new transition to the model

isNewState := vcurrent /∈ V ; // is this a new state?

if isNewState then
V := V ∪ vcurrent ;

endif

isViolated := vcurrent ! = v′ ; // is this a violation?

if isViolated then

if isNewState then
add to G′ a hypercube based on vcurrent ;

phase := stateExploration;

endif

E′ = E′ \ {(v, v′; e)} ; // remove the violated, anticipated transition

remove from G′ any vertex that has become unreachable;

endif

return !isViolated ;

chain starter is O(n × |E| × |V |). Once a chain starter is found, we start following the

MCD chain. Finding the MCD successor of a state requires O(n) time. This calculation

is done at most once for each discovered state. Hence, the total time for following MCD

chains is O(n× |V |).
Hence, the complexity of state exploration algorithm: O(n× |E| × |V |) + O(n× |V |)

= O(n× |E| × |V |).
For the transition exploration phase, we search in the actual model for the closest

unexplored transition. Again, to find such a transition, we traverse the actual model

starting from the current state in a Breadth-First manner, which requires O(|E|) time.

This traversal is done at most |E| times.

Hence, the complexity of the transition exploration algorithm: O(|E|×|E|) = O(|E|2).
Thus, the overall complexity is O(n× |E|2) + O(|E|2) = O(n× |E|2).
The Hypercube strategy does not have a significant overhead compared to the Greedy

strategy (the simple strategy of exploring the unexplored event closest to the current

state) or the optimized implementations of the Breadth-First and the Depth-First crawl-

ing strategies (we say that an implementation of a standard crawling strategy is optimized

if the implementation always uses the shortest known transfer sequence, as will be ex-

Model-based Crawling 53

plained in Section 7.3). These strategies have complexity O(|E|2); the factor n is the

overhead of the Hypercube strategy.

4.4.5 Proof of Optimality

In this section, we show that the Hypercube strategy is optimal for applications that

are instances of the Hypercube meta-model. In particular, we show that the Hypercube

strategy is optimal for both the number of resets and the number of event executions for

the complete crawling of a hypercube.

In addition to the optimality of the complete crawling (exploring all transitions), we

are also concerned with finding all the states in the hypercube first. It is a fact that the

number of resets required to visit all the states of the hypercube is also optimal since we

are using an MCD of the hypercube, which is by definition the smallest number of chains

(thus of resets) to go over all the states. However, for the number of events executed to

visit all the states, the Hypercube strategy is deliberately not optimal. This is because,

when we come to the end of an MCD chain, we continue exploration from the current

state instead of resetting and executing another MCD chain immediately, in order to

keep the number of resets required for the overall crawling at the optimal value. If we

do not extend the MCD chains, then this number will be optimal, but in that case the

number of resets is not optimal anymore for the complete crawl.

Number of Resets

First, we consider the number of resets. Notice that, in a hypercube, each transition

leaving a state at level i enters a state at level i + 1. Once we are at a state at level

i, unless we reset, there is no way to reach another state at level j ≤ i. This means, if

in total there are k transitions leaving level i, then to traverse each one at least once,

we have to reset the application k times (counting the first load also as a reset). Since

the level with the largest number of outgoing transitions is the middle level, the lower

bound on the number of resets for crawling the hypercube is r∗ =
(

n
bn/2c

)
× dn/2e where(

n
bn/2c

)
is the number of states at the middle level and dn/2e is the number of outgoing

transitions for a state at the middle level.

We first introduce the notation that will be used in the following. Let CH =

{C1, C2, . . . , Cm} denote the set of all chains executed by the Hypercube strategy when

crawling a hypercube of dimension n. In particular Ci = {vi0, vi1, . . . , vik} represents the

i-th chain executed by the strategy where vij is the state at level j. We show that the

Model-based Crawling 54

number of chains executed by the Hypercube strategy for crawling a hypercube is r∗

(i.e., m = r∗), so only r∗ resets are used by the Hypercube strategy. We begin by the

following properties of the Hypercube strategy.

Lemma 4.4.1. Let Cu ∈ CH such that u ≤ r∗, then there exists a transition t = (vui , v
u
i+1)

with i ≤ bn/2c such that Cu is the first chain to traverse t.

Proof. If u ≤
(

n
bn/2c

)
, then Cu is executed during the state exploration phase and contains

an MCD chain Cu
MCD ∈ Cu. If u = 1, then the statement holds trivially. Let (vui , v

u
i+1)

be the transition traversed to reach the chain starter vui+1 of Cu
MCD. vui+1 cannot be in the

upper half since a chain starter is either at the middle level or in the lower half. Hence,

i + 1 ≤ bn/2c implies i < bn/2c and obviously (vui , v
u
i+1) was untraversed before Cu.

If u >
(

n
bn/2c

)
, then Cu is executed during the transition exploration phase. According

to the transition exploration strategy, the first untraversed transition of Cu will be the

one that is closest to the bottom among the untraversed transitions in the hypercube.

So, unless all transitions leaving the middle level are traversed, the source of the first

untraversed transition of Cu cannot be at a higher level than the middle. Since r∗ chains

are needed to traverse all the transitions leaving the middle level and u ≤ r∗, there exists

t = (vui , v
u
i+1) with i ≤ bn/2c such that Cu is the first chain to traverse t.

Lemma 4.4.2. If a chain Cu ∈ CH enters state vui using an already traversed transition

and leaves vui using a previously untraversed transition, then at the time Cu is executed,

all transitions entering vui have already been traversed.

Proof. Let t = (vui−1, v
u
i) and t′ = (vui , v

u
i+1) be the transitions that Cu traversed to enter

and leave vui . If u ≤
(

n
bn/2c

)
, then Cu is executed during the state exploration phase

and contains an MCD chain Cu
MCD ∈ Cu. If t and t′ are the transitions on the subpath

that leads to the chain starter of Cu
MCD, then t′ is the first untraversed transition in Cu.

Since the Hypercube strategy tries to use unexplored transitions as much as possible,

all transitions entering vui must have already been traversed in this case. Notice that, t

cannot be a transition in Cu
MCD since all transitions in an MCD chain is traversed for the

first time by the MCD chain. Also, t cannot be a transition that is used to extend Cu
MCD

towards the top since only previously untraversed transitions are used for this purpose.

If u >
(

n
bn/2c

)
, then Cu is executed during the transition exploration phase. Assume

that there is an untraversed transition (v′i−1, v
u
i). Let (vuj−1, v

u
j) be the first untraversed

transition in Cu. Obviously, i 6= j. If i < j, (vuj−1, v
u
j) cannot be the first previously

untraversed transition in C. The transition exploration strategy would traverse (v′i−1, v
u
i)

Model-based Crawling 55

first since it is closer to the bottom of the hypercube. If i > j, then there is no untraversed

transition leaving vui−1, otherwise, the transition exploration strategy would prefer the

untraversed one instead of t. But, then transition exploration strategy would not execute

t at all since the transition exploration strategy does not continue further from the current

state (vui−1) when it has no untraversed transition.

Lemma 4.4.3. If Cu ∈ CH contains a transition t = (vui , v
u
i+1) traversed for the first

time by Cu such that i ≤ bn/2c, then Cu is also the first chain traversing every transition

following t in Cu and the size of Cu is at least bn/2c+ 1.

Proof. As explained in Section 4.4.1, in a chain executed by the Hypercube strategy, all

transitions following the first unexplored transition are also unexplored. So, Cu is the

first chain traversing all transitions after t in Cu.

Now, we show that the size of Cu is at least bn/2c+ 1. The case i = bn/2c is trivial.

Assume i < bn/2c. If Cu is executed during the state exploration phase, then there is an

MCD chain Cu
MCD ∈ Cu. Since every MCD chain contains a state in the middle level,

Cu
MCD also contains a state in the middle level, namely vubn/2c. If vubn/2c has a successor

vubn/2c+1 in Cu
MCD, we will definitely reach vubn/2c+1. Otherwise, since it is the first time

vubn/2c is visited, none of its outgoing transitions are traversed before and the strategy

will follow one of them. Assume Cu is executed during the transition exploration phase.

Let (vuj , v
u
j+1) be any transition traversed by Cu such that j ≥ i. We know that (vuj , v

u
j+1)

is untraversed before Cu. By Lemma 4.4.2, if a transition t′ entering vuj+1 was already

traversed at the time Cu is executed, then among all chains that traversed t′, only the

one that traversed t′ for the first time left vuj+1 using a previously untraversed transition.

(If at all, others used an already traversed transition to leave vuj+1). Combining this with

the fact that in a hypercube, for all levels j ≤ bn/2c, the number of transitions leaving

a state vj at level j is greater than or equal to the number of transitions entering vj,

we can conclude that there is an untraversed transition leaving vuj+1 and the transition

exploration strategy will follow it.

Lemma 4.4.4. Each transition leaving the middle level is traversed by the first r∗ chains.

Proof. This is a consequence of Lemma 4.4.1 and Lemma 4.4.3.

Lemma 4.4.5. Each transition leaving a state in the lower half of the hypercube is

traversed by the first r∗ chains.

Proof. Assume there exists a transition leaving a state in the lower half of the hypercube

that has not been traversed after r∗ chains. Let vi be a state at level i such that i < bn/2c

Model-based Crawling 56

and (vi, vi+1) is untraversed after r∗ chains. Let C = {v0, v1, . . . , vi, vi+1, . . . , vk} be the

chain that traverses (vi, vi+1) for the first time. By Lemma 4.4.3, k > bn/2c and all

transitions (vj, vj+1) in C where i ≤ j ≤ k are also traversed for the first time by C.

In particular, (vbn/2c, vbn/2c+1) was untraversed before C. But, this contradicts Lemma

4.4.4.

Lemma 4.4.6. Each transition entering a state in the upper half of the hypercube is

traversed by the first r∗ chains.

Proof. In a hypercube, the number of transitions entering a state in the upper half is

greater than the number of transitions leaving it. So, each state in the upper half must

be visited more than the number of its outgoing transitions. The Hypercube strategy

continues to traverse untraversed transitions as long as the current state has one. That

means, if all incoming transitions of an upper level state are traversed, then all outgoing

transitions are also traversed by the strategy. By Lemma 4.4.4, every transition entering

the level bn/2c + 1 (first level of the upper half) is traversed by r∗ chains. The result

extends similarly for the higher levels.

Theorem 4.4.7. Every transition in the hypercube is traversed by the first r∗ chains of

the Hypercube strategy.

Proof. Follows from Lemma 4.4.5 and Lemma 4.4.6.

Number of Event Executions

The Hypercube strategy is also optimal in terms of the total number of events executed

to crawl an application whose model is a hypercube. The optimal number of event

executions required to crawl a hypercube of dimension n ≥ 2 is e∗ = 2n−2n+ r∗n/2. For

simplicity, assume n is even, then this formula can be derived as follows (the number

is also valid for odd n). As we have shown, at least r∗ chains are needed to crawl the

hypercube and each of these chains has to cover a transition leaving a middle level state.

As a result, some transitions in the lower half must be traversed more than once. Since

there are r∗ chains to execute, for 1 ≤ i ≤ n/2, the total number of transition traversals

for transitions entering level i is r∗. So, for all transitions whose source is in the lower

half, r∗×n/2 event executions are needed. Each transition whose source is in the middle

level or in the upper half needs to be executed at least once. There are 2n−2 × n such

transitions. So, in total, the optimal number of event executions to crawl the hypercube

Model-based Crawling 57

is e∗ = 2n−2 × n + r∗ × n/2. It is not difficult to see that the Hypercube strategy uses

the optimal number of event executions as stated by the following.

Theorem 4.4.8. The Hypercube strategy executes exactly e∗ events when crawling a

hypercube application.

Proof. We have already shown that the Hypercube strategy uses the optimal number

of chains which is r∗. So, in the lower half of the hypercube no more than r∗ × n/2

events will be executed. Then, it is enough to show that each transition leaving a state

at level bn/2c ≤ i ≤ n is traversed exactly once. By Lemma 4.4.1 and Lemma 4.4.3,

each chain Cu ∈ CH is the first chain to traverse some t = (vui , v
u
i+1) with i ≤ bn/2c

and every transition after t is also traversed for the first time by Cu. That includes all

transitions traversed by the Hypercube strategy in the upper half. Hence, there is no

chain that re-traverses a transition in the upper half. Since we have also shown that the

Hypercube strategy covers all transitions, each transition in the upper half is traversed

exactly once.

4.5 Conclusion

Model-based crawling is an approach for designing efficient crawling strategies for RIAs.

In this approach, we aim at discovering the states of the application as early as possible

by trying to anticipate the model of the application. The Hypercube strategy is the first

strategy following this approach. The Hypercube strategy is based on the Hypercube

meta-model, and it is an optimal crawling strategy for this model. The new version of the

Hypercube strategy that is presented in this thesis overcomes the practical shortcomings

of the initial version which was introduced earlier.

As we present in Chapter 7, our experimental results show that the Hypercube strat-

egy is significantly more efficient than the Breadth-First and Depth-First strategies. This

is true even when the application that is being crawling does not conform to the Hyper-

cube meta-model at all. However, one difficulty with the Hypercube meta-model is that

its assumptions are often too strict to be valid in most RIAs, so it is difficult to find real

examples where the full strength of the strategy is employed. As we explain in the next

chapter, the strategies that were designed after the Hypercube strategy are less strict in

the sense that they observe the behavior of the events in the application before making

any commitment to an assumption and perform even better.

Chapter 5

The Probability Strategy

5.1 Introduction

The second model-based strategy is based on what has been called the Menu meta-model.

The Menu meta-model and the corresponding crawling strategy have been introduced

in [26] (in Suryakant Choudhary’s master thesis). Compared with the Hypercube meta-

model, the Menu meta-model has more realistic assumptions, thus the Menu strategy

performs better than the Hypercube strategy in most cases.

The discussions during the design of the Menu strategy led to a new strategy: the

Probability strategy, which is explained in this chapter. The Probability strategy is based

on a statistical model. Compared with the Hypercube and the Menu, the Probability

strategy is very relaxed in terms of assumptions. It is much simpler than both in terms

of implementation and comparable to the Menu strategy in terms of strategy efficiency.

In this chapter, we start with an overview of the Menu strategy in Section 5.2. The

overview of the Probability strategy is presented in Section 5.3. The formulation used

by the Probability strategy to prioritize events is given in Section 5.4. The algorithm

which uses this formulation to choose the next event to explore is explained in Section

5.5. We introduce some alternative versions of the Probability strategy in Section 5.6

and conclude the chapter in Section 5.7.

5.2 Overview of the Menu Strategy

The Menu strategy is based on the Menu meta-model. The Menu meta-model is formed

on the assumption that the result of an event execution is independent of the state

58

The Probability Strategy 59

(source state) where the event has been executed. That is, all instances of an event are

expected to lead to the same state. This captures the types of events that are used for

navigation in an application such that whenever they are executed they lead to the same

page (for example, a menu may contain “home”, “contact”, “about” etc.).

The Menu strategy works by categorizing each event found in the application. There

are three different categories and an event is classified after two instances of the event

have been explored (i.e., after the event has been executed from two different states).

These categories are

• Menu Events: A menu event is an event that resulted in the same state in its first

two explorations.

• Self-Loop Events: A self-loop event is an event that did not cause any state change

in its first two explorations.

• Other Events: All the remaining events which had neither of the above behaviors

in their first two explorations.

Initially, each event is assumed to behave like a menu event, even though it is not

categorized yet. That means, in its second exploration an event is expected to lead to

the same state that was reached in its first exploration. Based on the result of the second

exploration, an event is categorized and its category is never changed afterward even if

some of its instances violate the expected behavior of its category later on.

During the state exploration phase, the Menu strategy aims to explore uncategorized

events (i.e., the events that have not been explored at all from any state or explored just

once) and the events that are categorized as “other”. Among these events, the priority is

given to the events that have not been explored at all. The events categorized as menu

or self-loop are not explored explicitly during this phase since they are not expected to

result in a new state. However, an unexplored menu event can still be used to build

a transfer sequence since the result of an unexplored menu event can be predicted. Of

course, in such cases, after the menu event is executed in the transfer sequence, it is

checked whether the reached state is the one predicted. If the reached state is not the

predicted one, the strategy makes a new decision regarding what to do next from the

reached state.

Once all the instances of uncategorized and “other” events have been explored, the

strategy moves on to the transition exploration phase to explore the remaining menu

and self-loop events. As an optimal transition exploration strategy, the Menu strategy

The Probability Strategy 60

requires to solve the Rural Chinese Postman Problem (RCPP), which is the problem of

finding a least cost path that traverses a subset of all edges in a known graph. Since the

RCPP is an NP-Hard problem [34], the Menu strategy, instead, uses a solution to an

easier problem, the Chinese Postman Problem (CPP), which is the problem of finding a

least cost path that traverses all the edges in a known graph.

Unlike the Hypercube strategy, which makes strict assumptions about an event’s

behavior without any observation of the actual behavior of the event, the Menu strategy

observes two explorations of an event before finalizing the assumption about the event’s

behavior. The Menu strategy then uses these observations to differentiate between the

events that are less likely to lead to new states (menu and self-loop events) and the ones

which are more likely (“other events”), so that the latter are given priority. This idea

of observing the events’ behavior and prioritizing the events based on their likelihood of

discovering a new state is the basis for a new strategy that we discuss next.

5.3 Overview of the Probability Strategy

In a RIA, each event can be associated with the set of states that are reached by ex-

ploring the instances of the event. This set can be referred to as the “destination set”

of the event. The Menu strategy works by separating the events that are likely to have

singleton destination sets (the “menu” events) from the events that are likely to have

non-singleton destination sets, so that the latter are given exploration priority after the

self-loop events are excluded. However, the Menu strategy relies on very few observations

for categorization and does not present any further measure to compare two events that

are in the same the category.

With the Probability strategy, we attempt to take into account the size of the des-

tination set of an event. On one extreme of the range, there are menu events (having a

singleton destination set), and on the other extreme, there are events that lead to a dif-

ferent state from each source state. The destination set of an event can be anywhere on

this range. It is possible to estimate where the destination set of an event is more likely

to be located on this range by looking at the results observed during previous executions

of the event. However, using such an estimation is not a good choice for prioritization

since the possible overlaps between the destination sets of the events are not taken into

account. It is not reasonable to give priority to an event simply because it leads to many

different states which have already been reached by other events. Since the goal is to

discover states, it is more reasonable to look at how often an event discovers a state (i.e.,

The Probability Strategy 61

leads to a state that has not been reached before by any event).

The Probability strategy is a strategy based on the hypothesis that an event which

was often observed to lead to new states in the past is more likely to lead to new states

in the future. In this strategy, an event’s probability of discovering a new state on its

next exploration is estimated based on how successful it was in its past explorations.

The formulation used for this purpose is explained in Section 5.4.

The Probability strategy aims at choosing the action that maximizes the probability

of discovering a state. This choice is not solely based on a comparison of the “raw”

probabilities of the events. The length of the transfer sequence that needs to be executed

in order to explore an event is also taken into account. In Section 5.5, we first introduce

a mechanism to compare a pair of events and then give an algorithm which uses this

mechanism to choose the action that maximizes the probability of discovering a state.

5.4 Estimating an Event’s Probability

5.4.1 Rule of Succession

The problem of estimating an event’s probability of discovering a new state, given the

observations of its previous explorations, is analogous to the following mathematical

example, that is known as the “(finite1) rule of succession” [68]

Suppose there is an urn with a finite but unknown number of balls, each of which

is either red or white. m balls are drawn at random without replacement from the urn

such that p of the drawn balls are observed to be white. If nothing is known about the

relative proportion of red and white balls in the urn, what is the probability that next

ball drawn will be white?

When it is assumed that any proportion of red and white balls is equally likely, the

answer to this question is given by the Bayesian formula: p+1
m+2

[68].

5.4.2 Probability of an Event

Using the rule of succession, we can estimate the probability, P (e), of discovering a new

state on an event e’s next exploration:

P (e) =
S(e) + ps
N(e) + pn

(5.1)

1The original formulation of the rule of succession by Laplace supposes that the trials can be repeated

infinitely many times, but the same result is still applicable to the finite case [68]

The Probability Strategy 62

• N(e) is the “exploration count” of e, that is, the number of times e has been

explored (executed from different states) so far,

• S(e) is the “success count” of e, that is, the number of times e discovered a new

state out of its N(e) explorations,

• ps and pn are called the pseudo-counts and they represent the “initial success

count”’ and the “initial exploration count”, respectively. These terms are preset

and define the prior (initial) probability for an event.

To use this formula, we assign values to ps and pn to set the initial probability. For

example, ps = 1 and pn = 2 can be used to set an event’s initial probability to 0.5

(notice that, N(e) = S(e) = 0 initially). To minimize the effect of the pseudo-counts on

the probability, one may prefer to use smaller (possibly non-integer) numbers, such as

ps = 0.5 and pn = 1 for an initial probability of 0.5.

Having Bayesian probability, instead of using the “classical” probability, P (e) =

S(e)/N(e), with some initial values for P (e), avoids in particular having events that get

a probability of 0 because no new state were found at their first exploration. With our

formula, events never have a probability of 0 (or 1) and can always be picked up after a

while.

After each exploration of an event, the event’s probability is updated. As we ex-

plore an event and have more observations about its behavior, the weight of the initial

probability decreases and actual observations dominate the value of the probability.

5.5 Choosing the Next Event to Explore

Once we know how to estimate the probability of an event, the next step is to design

an algorithm that uses these probabilities to choose the event to explore next. Knowing

that among the unexplored events in a given state the best choice is the one with the

highest probability, this problem is better expressed as choosing a state where the next

event should be explored. In this section, we provide an algorithm to choose a state

that maximizes the probability of discovering a state. In the remainder, the following

notation is used.

• S denotes the set of already discovered states. Initially, S contains the initial state

and each newly discovered state is added to S as the crawl progresses.

The Probability Strategy 63

scurrent

s2

P (s2) = 0.3

s1

P (s1) = 0.7

lT (s2)

lT (s1) =
lT (s2) +

k

Figure 5.1: Two candidate states where it is costlier to reach the one with the higher

probability.

• scurrent represents the current state, the state we are currently at in the application.

• For a state s ∈ S, we define the probability of the state, P (s), as the probability

of the event that has the maximum probability among all the unexplored events of

s. If s has no unexplored events, then P (s) = 0.

• lT (s) is the length of the shortest known transfer sequence from scurrent to s.

A simple algorithm would be choosing the state which has the highest probability.

However, this might not always be the best choice2. For instance, consider the case

depicted in Figure 5.1 where we have two states s1 and s2 with unexplored events such

that P (s1) > P (s2) and lT (s1) > lT (s2). In this case, it is not fair to choose s1 just

because P (s1) > P (s2). This ignores the fact that by choosing s1 we are executing

k = lT (s1)− lT (s2) more events as part of the transfer sequence. For a fairer comparison,

we should consider the probabilities when an equal number of events are executed.

k-Iterated Probability of a State To compare a pair of states s1 and s2, in the

case P (s1) > P (s2) and lT (s1) > lT (s2) (note that this is the only case where making a

decision is not trivial), we consider the difference of the lengths of the transfer sequences,

k, and calculate the “k-iterated probability” of s2 (the state that is closer to the current

state), noted as P (s2, k) .

We define P (s2, k) as the probability of discovering a new state by choosing s2 and

exploring k more events after the event in s2 is explored. Thus, P (s1) and P (s2, k),

2The efficiency comparison of this simple algorithm with the proposed algorithms can be found in

Section A.2 of Appendix A. The results show that using the proposed algorithm discovers the majority

of the states faster than this simple algorithm.

The Probability Strategy 64

which are the probabilities of finding a new state when an equal number of events are

executed, can be used to compare s1 and s2.

The difficulty in calculating the iterated probability P (s, k) for a state s is that

when we explore an event from s, we do not know which state is going to be reached;

therefore, we do not know the probability of this reached state. To address this problem,

we estimate the probability, Pavg, of exploring an event from any state.

Assuming that reaching any state is equally likely, we define Pavg as the average

probability of all the states:

Pavg =

∑
s∈S P (s)

|S| (5.2)

With Pavg, it is easy to compute P (s, k) using (1− P (s))(1− Pavg)
k, the probability

of not discovering a state by choosing s and then not discovering any state by exploring

k more events (each with probability Pavg) afterwards:

P (s, k) = 1− (1− P (s))(1− Pavg)
k (5.3)

5.5.1 Algorithm

Based on the discussion above, we present Algorithm 7 to decide on a state, schosen, where

the next event should be explored. The algorithm chooses the state that maximizes the

probability of discovering a state. In other words, a state s ∈ S that satisfies the following

condition becomes schosen.

∀s′ ∈ S
if lT (s) > lT (s′), P (s) ≥ P (s′, lT (s)− lT (s′))

if lT (s) ≤ lT (s′), P (s, lT (s′)− lT (s)) ≥ P (s′)

The first case makes sure that choosing s has a better probability than choosing any

s′ which is closer to the current state than s is. The second case makes sure that choosing

s has a better probability than any other state s′ that is not closer to the current state

than s is (notice that, when lT (s) = lT (s′), we compare directly P (s) and P (s′), since

P (s, lT (s′)− lT (s)) = P (s, 0) = P (s)).

The algorithm initializes the variable schosen to the current state and searches for a

better state in iterations. At iteration i, schosen is compared with the state s that has the

highest probability among the states that are i event executions away from the current

state (line 6). That is, the iterated probability of schosen compared with P (s) to decide

The Probability Strategy 65

if s is preferable to schosen (i.e., P (s) > P (schosen, lT (s)− lT (schosen))). If this is the case,

then s becomes the new schosen.

This search continues until it is impossible to find a state which could be a better

choice than schosen. It is possible to calculate how many iterations later we can be sure

that schosen is the best choice. This is because, after each iteration (that we do not find a

better state), the iterated probability of schosen increases and at some point, the iterated

probability will be greater than the probability, Pbest, of the state that has the maximum

probability among all states. When the iterated probability reaches that point, it is

not required to search any further since even a state with the highest probability is

not preferable to schosen anymore. To calculate the number of iterations we should keep

searching for a better state, the function “maxDepthToCheckAfter” is used as explained

below.

Algorithm 7: ChoosingTheNextState

Require: There is an unexplored event

Input: The extracted model of the application so far

Input: scurrent the current state

Output: a state schosen where next event should be explored

schosen := scurrent ;1

i := 0 ;2

depthToCheck := maxDepthToCheckAfter(schosen);3

while i < depthToCheck do4

Let s be the state with max probability among all si with lT (si) = i;5

if s is preferable to schosen then6

schosen := s ;7

depthToCheck := i + maxDepthToCheckAfter(schosen) ;8

i := i+ 1 ;9

return schosen ;10

Calculating maxDepthToCheckAfter: Whenever we set schosen, it is possible to

calculate a value d such that we can stop the search in case we do not see a state that

is preferable to schosen in d more iterations. This value is the smallest (integer) d that

satisfies the following inequality

P (schosen, d) ≥ Pbest (5.4)

The Probability Strategy 66

where Pbest is the probability of a state with maximum probability (we just need the

value of Pbest, we do not need the location of a state with probability Pbest in the model).

By solving this inequality for d, we define maxDepthToCheckAfter3:

maxDepthToCheckAfter(schosen) =

{
blog(1−Pavg)(

1−Pbest

1−P (schosen)
)c if P (schosen) > 0

∞ if P (schosen) = 0
(5.5)

We consider this depth to be infinity in the case P (schosen) = 0. That means, when we

initialize schosen to the current state (line 1 of the algorithm), if there is not any unexplored

event in the current state (i.e., P (schosen) = 0), then we cannot set a depth bound on

the search until a state with an unexplored event is found. To prevent an infinite loop,

the existence of a state with an unexplored event is required as a precondition of the

algorithm.

We remind again that if a better state is found within this calculated depth, then

this calculation is done again for the new schosen.

5.5.2 Complexity Analysis

Considering the extracted model of the application as a graph G = (V,E), the worst-case

time complexity of the Probability strategy can be expressed in terms of the size of the

model, |E|, and the maximum number of events in a state, noted as n (i.e., n is the

maximum outdegree of G). In this analysis, we assume that the unexplored events of

each state are maintained in a binary heap data structure using the probabilities of the

events as keys. The complexity of the operations required to decide on an event and

exploring the event can be analyzed as follows.

• Finding the unexplored event with the maximum probability in a state is an O(1)

operation (i.e., the operation find max in a heap).

3 The first case of the formula 5.5 is obtained by solving the inequality 5.4 for d as follows.

P (schosen, d) ≥ Pbest

1− (1− P (schosen))(1− Pavg)d ≥ Pbest

1− Pbest ≥ (1− P (schosen))(1− Pavg)d

1−Pbest

(1−P (schosen))
≥ (1− Pavg)d

Taking the log of both sides to base (1− Pavg), the smallest integer d that satisfies this inequality is

found:

blog(1−Pavg)(
1− Pbest

1− P (schosen)
)c

The Probability Strategy 67

• Calculating Pavg and Pbest requires O(|V |) time.

• Traversing the current model to determine schosen requires O(|E|) time.

• Updating an event’s probability after the event is explored requires to go over

each state that the event is still unexplored and do a decrease or increase key

operation on the heap that maintains the unexplored events of the state. This

takes O(|V | log n) time.

• Removing the explored event from the heap of the schosen takes O(log n) time (i.e.,

delete max operation).

So, the total time for a single event exploration isO(1)+O(|V |)+O(|E|)+O(|V | log n)+

O(log n) = O(|E|+ |V | log n)

Since there are |E| events to explore, the total time for exploring all the events is

O(|E|2 + |E||V | log n). The term |E||V | log n is the overhead of the Probability strategy

when compared with the Greedy and the optimized versions of Depth-First and Breadth-

First which have a complexity of O(|E|2).

5.6 Alternative Versions of the Strategy

We consider the described algorithm so far as the default version of the Probability

strategy and use this default version when comparing the probability strategy with other

strategies in the experiments.

We have also experimented with several alternative versions of this default strategy.

In this section, we explain these alternative versions. However, with these alternative

versions, there were no overall significant improvement on the results across all the ap-

plications that were used in the experiments. Although it is sometimes the case that

an alternative version yield better results than the default version, the improvement is

either not very significant or specific to some of the applications. The results for these

alternative versions are provided in Appendix A.

Alternative Algorithm to Choose a State

When deciding on the state where the next event should be explored, the default strategy

chooses the state that maximizes the probability of discovering a state. An alternative

algorithm is to choose the state which minimizes the expected cost (number of event

The Probability Strategy 68

executions) to discover a state. The two methods are not so different, except that the

alternative method considers the cost of discovering a state more explicitly than the

default one.

For a state s, the expected cost of discovering a state by choosing s, noted as E(s), is

calculated by using Pavg as the probability of discovering a state in each event exploration

subsequent to the event in s:

E(s) = P (s)(lT (s) + 1) +
∞∑
k=1

(1− P (s))(1− Pavg)
k−1Pavg(lT (s) + k + 1)) (5.6)

The first term P (s)(lT (s) + 1) is the expected cost of discovering a state by exploring

the event in s where lT (s) + 1 is the cost of exploring an event from s. The summation

is for the subsequent explorations that would be done in case a state is not discovered in

the previous explorations: (1−P (s))(1−Pavg)
k−1Pavg is the probability of discovering a

state in the k-th subsequent exploration and (lT (s) + k + 1) is the associated cost.

The infinite sum in E(s) converges to the following value4:

(1− P (s))(lT (s) + 2 +
1− Pavg

Pavg

) (5.7)

Thus, the formula to compute E(s):

E(s) = P (s)(lT (s) + 1) + (1− P (s))(lT (s) + 2 +
1− Pavg

Pavg

) (5.8)

For this alternative version, the algorithmic framework given in Algorithm 7 still

applies. In this case, the state that has a smaller expected cost is preferable when

comparing two states. In addition, it is still possible to calculate for how many more

iterations the search for a better state should continue, as we explain next.

4 The value of the infinite summation is obtained as follows. We first rewrite the summation by

placing the free terms outside:

(1− P (s))Pavg

∞∑
k=1

(1− Pavg)k−1(lT (s) + k + 1))

The terms in the new summation form an arithmetico-geometric sequence [63] whose n-th term is defined

to be [a+ (n− 1)d]rn−1. In our case, we have a = lT (s) + 2, d = 1 and r = 1−Pavg. When −1 < r < 1,

the infinite arithmetico-geometric series converges to

a

1− r +
dr

(1− r)2

Applying this in our case, we obtain the value in 5.7

The Probability Strategy 69

Calculating maxDepthToCheckAfter: The maximum depth to check after schosen

is set is the smallest (integer) d that satisfies the following inequality

E(schosen) ≤ (d+ lT (schosen) + 1)Pbest + (1− Pbest)(d+ lT (schosen) + 2 +
1− Pavg

Pavg

) (5.9)

The right hand side of the inequality is the expected cost of a state that is d+ lT (schosen)

event executions away from the current state and that has the maximum probability,

Pbest.

Solving this inequality for d, the function maxDepthToCheckAfter is defined:

maxDepthToCheckAfter(schosen) ={
bE(schosen)− 1−Pavg−Pbest

Pavg
− lT (schosen)− 2c if P (schosen) > 0

∞ if P (schosen) = 0
(5.10)

As in the default version, if the current state does not have an unexplored event

(initially, P (schosen) = 0), we do not set a depth bound until a state with an unexplored

event is encountered during the search.

Alternative Probability Estimation

An alternative way to estimate the probability of an event is to give more weight to the

results of the event’s recent explorations. This allows the strategy to react more quickly

to changes in an event’s behavior than the default probability formula. In the default

formula, the result of an exploration that happened in an early period of the crawl still

has its effect on the probability even after many explorations.

We experiment with moving average techniques to give more weight to recent explo-

rations. By doing this, we prioritize the events based on smaller observation periods.

Two alternative formulations that are used for this purpose are explained below.

1. Simple Moving Average (SMA): This technique uses the unweighted average

of the most recent w explorations of an event to calculate the event’s probability.

The parameter w is the window size. The formula for SMA is

PSMA(e) =
S(e, w) + ps

min(N(e), w) + pn
(5.11)

• S(e, w) is the “success count” of e in its most recent min(N(e), w) explorations

The Probability Strategy 70

• N(e), ps and pn are, as previously, the number of explorations of e so far, and

the pseudo-counts for the initial success count and initial exploration count,

respectively.

Initially, when the event has not yet been explored w times, the probability 5.11 is

identical to the probability 5.1 (used for the default version). The moving average

takes effect once the event is explored w times. Thus, the probability 5.1 is a special

case of the probability 5.11 for w =∞.

2. Exponentially Weighted Moving Average (EWMA): This technique calcu-

lates the probability of an event using a weighted average of the recent exploration

results of the event.

Let {Xn} = X1, . . . , Xn be a sequence of binary outcomes representing the explo-

ration history of an event, that has been explored n times so far, such that Xi = 0

iff in its i-th exploration, the event failed to discover a new state (Xi = 1, other-

wise). Then, the EWMA of the sequence {Xn}, written as EWMA({Xn}), can be

calculated using the following recursive formula:

EWMA({Xn}) = αXn + (1− α)EWMA({Xn−1}) (5.12)

In EWMA, the weights decrease exponentially towards the older explorations. The

smoothing parameter, α, adjusts the relative importance of the result of a recent

exploration. As α gets higher, the weight assigned to the result of a recent explo-

ration increases.

A consideration when using EWMA is to define an initial value, EWMA({X0}), for

the case when the event has not been explored yet. The smaller the value chosen

as α, the longer will be the effect of the initial value on the resulting average. For

this reason, we use the following formulation where the EWMA is not applied until

the event explored at least 1
α

times.

PEWMA(e, n+ 1) =

{
P (e) if n < 1

α

αXn + (1− α)PEWMA(e, n) if n ≥ 1
α

(5.13)

where PEWMA(e, n) is the probability of discovering a new state on the n-th explo-

ration of e. Note that, the default probability (formula 5.1) is used until the event

executed 1
α

times. (For example, for α = 0.01, we wait for 100 explorations before

The Probability Strategy 71

applying the EWMA.) After that point on, the EWMA is used taking the current

probability of the event as the initial value for the moving average.

Notice that, the formula 5.1 is the special case of the 5.13 for α = 0.

Aging

We apply the notion of aging to prevent an event from not being picked for exploration

for a long time. We define the age of an event e, Age(e), as a value between 0 and 1

using the following formula

Age(e) = 1− number of discovered transitions when e was last explored

number of transitions discovered so far
(5.14)

Initially, the age of an event is defined as 1. According to this formula, if e is the most

recently explored event, then its age is 0. While an event is not picked for exploration,

its age increases.

A threshold parameter τ is introduced such that when an event’s age becomes greater

than τ , then its probability is boosted (by temporarily setting its probability to Pbest)

until it is explored once again. Once an event whose probability has been boosted is

picked for exploration, it continues to use its regular probability.

Alternative Estimation of Pavg

An alternative way to estimate Pavg is using the EWMA of the event explorations so far.

That is, if {Yn} = Y1, . . . , Yn is the sequence of binary outcomes for the event explorations

of the crawl so far such that Yi = 0 iff the i-th event exploration failed to discover a new

state (Yi = 1, otherwise). (Notice that, {Yn} is not a sequence for a specific event, it

contains the result of any exploration). Then, we define

Pavg = EWMA({Yn}) (5.15)

where EWMA({Yn} is as defined by the formula 5.12 with the initial value equal to the

initial probability that is used for the events (i.e., EWMA({Y0}) = ps/pn).

The difference between this alternative estimation and the default one is that the

default estimation assumes that when we explore an event, we may end up in any one of

the known states (ending up in each state is equally likely) and thus the probability of

the next event we are going to explore would be the average of the probabilities of the

states. In the alternative version, the expectation is that the next event we are going

to explore will have a similar result as the recent explorations regardless of the state we

end up.

The Probability Strategy 72

5.7 Conclusion

We have explained the Probability strategy that uses the statistical data accumulated

during the crawl to choose an event to explore such that the chosen event gives the

highest probability of discovering a new state. We have first explained the default ver-

sion of the strategy and then introduced some alternative versions. Although some of

these alternative versions yield better results in some cases, we do not see an overall

improvement in general. For this reason, we use the default version of the strategy for

comparison with the other crawling strategies in Chapter 7. We present the comparison

of the alternative versions with the default version in Appendix A.

The Probability strategy is a better alternative to the previous model-based crawling

strategies, the Hypercube and the Menu. Experimental results show that the Probability

strategy performs even better than the Hypercube strategy which is already more efficient

than the Breadth-First and Depth-First. The Probability and the Menu often have

comparable results in terms of number of events executed and the number of resets. An

advantage of the Probability strategy over the Menu is its simpler implementation since

the Menu strategy solves a Chinese Postman Problem (CPP) for its transition exploration

strategy. Although CPP is solvable in polynomial time, efficiently implementing a solver

for CPP is not so straight-forward [65].

Chapter 6

Crawler Implementation

6.1 Introduction

In this chapter, we explain the implementation details of our crawler. Our crawler has

been implemented as a prototype of IBM R© Security AppScan R© [44]. AppScan is an

automated web scanner which aims at detecting security vulnerabilities and accessibility

issues in web applications. AppScan originally does not have any crawling strategy for

RIAs.

Some of the existing components in AppScan are used to build our crawler. These

are the DOM Equivalence algorithm and the embedded browser (which includes the

functionalities of JavaScript execution and DOM manipulation). Except for the Greedy

and the Menu strategies, I implemented all the mentioned crawling strategies. For event

identification, the functionality of detecting the elements that have registered events is

provided by AppScan, but I implemented the algorithms that produce event identifiers.

We explain the crawler architecture in Section 6.2. The details of event identifica-

tion algorithms are presented in Section 6.3. This is followed by the DOM Equivalence

algorithm in Section 6.4. In Section 6.5, we conclude the chapter.

6.2 Crawler Architecture

Figure 6.1 shows the simplified RIA crawler architecture. The AppScan component per-

forms the functionalities of a browser. It is able to construct the initial DOM for a given

URL, execute JavaScript using its JavaScript Engine sub-component and perform the

required manipulations to update the current DOM. It also contains the sub-components

73

Crawler Implementation 74

for Event Identification and DOM Equivalence. The Event Identification component de-

tects the DOM elements that have enabled events on the current DOM and produces

identifiers for these events. The DOM Equivalence component generates the DOM iden-

tifier for the current DOM. This information is used by the crawling strategies. The

crawling strategies are implemented as a separate module that can be called from App-

Scan.

AppScan

JavaScript

Engine
DOM

Equivalence

Event

Identification

Current DOM

Instance

read & writeread read

data access

control flow

processing component

data component

DOM Identifier

+ Event Identifiers

for Current DOM

Crawling Strategy

Extracted

Model

read & write

Sequence of

Event Identifiers

for Execution

Figure 6.1: RIA Crawler Architecture

When the AppScan component is given a URL to crawl, it retrieves the contents from

the server, and constructs the DOM. Later, it generates the set of event identifiers for

the events found in the DOM and then generates the identifier for the DOM. (Details of

how event and DOM identifiers are generated are explained below). The DOM identifier

and the list of event identifiers are passed to the crawling strategy. The crawling strategy

then decides on an event to explore and returns an event sequence. The event sequence

consists of the event to explore appended to a (possibly empty) transfer sequence, which

will take the crawler to the DOM from where the event will be explored. The AppScan

component executes the received sequence of events and returns the control back to the

crawling strategy, providing the event identifiers and the DOM identifier for the reached

DOM. Whenever the crawling strategy takes control, it updates the extracted model

according to the result of the last event exploration. This process continues until there

is no unexplored event left and thus a model for the URL is extracted.

Crawler Implementation 75

6.3 DOM Events and Event Identification

An important component for a RIA crawler is the algorithm to identify the events in

a DOM. An event identifier is used to differentiate between the user actions that can

be exercised in the application. It allows the crawler to recognize an event in a state

when the state is visited at different times during the crawl, so that the crawler can keep

track of unexplored events in the state or trigger explored transitions from the state. In

addition, event identifiers are used for detecting common events in different states. This

allows crawling strategies to make predictions about an event’s behavior.

To compute an event identifier, the following information is needed:

• DOM Element Identifier: Since the events are associated with DOM elements,

it is necessary to compute an identifier for the DOM element to which the event is

registered. A DOM element identifier is used to differentiate an element from the

other elements in the same DOM, as well as to recognize the element when it is

seen in a different DOM or when an equivalent DOM is visited again later.

• Event Type: This is the name of the user action (onmouseover, onclick, etc.).

This information is needed since the same DOM element can react to multiple

types of events.

• Event Handler: This is the JavaScript code that will be executed when the event

is triggered. Event handler defines what happens when the event occurs. As we

explain below, it is possible to change the event handlers that are registered to a

DOM element through JavaScript execution. That means, the same DOM element

may react to the same event type differently if its event handlers are changed.

In Section 6.3.1, we first explain different ways of registering event handlers to ele-

ments and later in Section 6.3.2, we explain how event identifiers are produced in our

prototype.

6.3.1 Event Registration Methods

The evolution from simple HTML pages to RIAs has resulted in three different ways to

register an event handler to a DOM element.

1. As inline HTML: The oldest way is to specify the event handler as an attribute

of the HTML element. For example, the following shows a div element that reacts

Crawler Implementation 76

to mouse click events.

<div id="id1" onclick="doSomething()">Text content</div>

The event handler is registered using the onclick attribute of the HTML element.

The value of the attribute is the event handler, in this case a call to a JavaScript

function named doSomething.

For an anchor element, a, it is also possible to use the href attribute to trigger

JavaScript code when the anchor is clicked. This is achieved by specifying the event

handler as the value of the href attribute as follows.

Text content

The href attribute is normally used to specify the URL that needs to be loaded

when the anchor is clicked; however, browsers interpret a string that is prefixed by

the keyword “javascript:” and that is used in a place where a URL is expected as

JavaScript code.

2. Assignment via JavaScript: Later, browsers allowed registration of event han-

dlers by assigning the event handler as a property of the DOM element through

JavaScript. This method made dynamic registration of event handlers possible.

The following example registers the function named doSomething as an onclick

event handler to the element with id id1

<script type="text/javascript">

document.getElementById("id1").onclick = doSomething;

</script>

3. Using DOM Event Specification: The most recent and advanced way of event

registration is through using the event registration model that is introduced in

DOM Level 2 specification. Unlike the previous methods, which only allow a single

event handler for each type of event, in this model, any number of event han-

dlers can be added for each type of event using the addEventListener method via

JavaScript. (In Internet Explorer, this specification was not implemented exactly

until version 9; a slightly different interface was used.) When multiple event han-

dlers are registered to an event type, all the registered event handlers are run one

after the other when the event occurs. The following example registers two event

handlers to the onclick event of the element with id id1.

<script type="text/javascript">

var element = document.getElementById("id1");

element.addEventListener = ("click", doSomething);

Crawler Implementation 77

element.addEventListener = ("click", doAnotherThing);

</script>

In this example, when the element is clicked, both JavaScript functions, doSomething

and doAnotherThing, will be executed. In this model, it is also possible to remove

a previously registered event handler using the removeEventListener method.

6.3.2 Implementation

Our crawler supports the three types of event registrations methods mentioned. The

AppScan component provides us the set of DOM elements that have registered event

handlers. The event handlers that are registered using method 1 is easily detectable

since they are part of the HTML. For DOM elements that have events registered using

methods 2-3, AppScan uses its JavaScript Engine to keep track of which DOM elements

have registered event handlers.

Once all the elements with event handlers are known, we need to generate an event

identifier for each element and event type. Our identifiers have the following form:

DOMELEMENTID~~EVENTHANDLERID~~EVENTTYPE

where ~~ is a delimiter separating different information for the event. DOMELEMENTID is

an identifier for the DOM element that the event is associated with, EVENTHANDLERID is

an identifier for the event handlers (which is produced by hashing the definitions of the

JavaScript functions registered for that event), EVENTTYPE is the type of the event.

In the current implementation, we have two different mechanisms to produce the

DOMELEMENTID component of the event identifier. These two methods are explained

next. Later, we explain the event types supported in our crawler.

Identifying DOM Elements (Generating DOMELEMENTID)

Method 1 - Element Identifier based on HTML: In this method, the DOM el-

ement identifier is produced based on the HTML representation of the DOM element.

For example, consider the following HTML anchor element which has an event handler

registered using the href attribute.

The produced event identifier for the href event of this element is

~~~~HREF

In this event identifier, DOMELEMENTID is the HTML of the element itself. The EVENT-

HANDLERID is empty since the event handler doSomething() is part of the DOM element

Crawler Implementation 78

identifier (The EVENTHANDLERID part contains a value only for the events registered us-

ing methods 2 and 3 from Section 6.3.1). The EVENTTYPE is HREF which shows that the

element has an event registered to it using its href attribute.

In some cases, this element identification method might not be able to produce a

unique identifier for an element. For example, Figure 6.2 shows the rendering of an

HTML table in the browser on the left and the corresponding HTML body on the right.

Let’s assume that the following JavaScript is executed to register the removeRow function

as an event handler on the third column of each row such that the row is removed from

the table when the third column is clicked.

<script type="text/javascript">

removeRow = function(){
this.parentNode.parentNode.removeChild(this.parentNode);

};
var rows = document.getElementsByTagName("tr");

for (var i=0; i < rows.length; i++){
rows[i].getElementsByTagName("td")[2].addEventListener("click", removeRow);

}
</script>

The explained element identification method cannot differentiate between these ele-

ments since their HTML code are identical:

<td style="color:blue"> Remove </td>

Moreover, each element have the same event handler “removeRow”. (The keyword

“this” used inside the function is a reference to the element that owns the handler. With

this reference the function is able to remove the row whose third column is clicked.)

When an event cannot be identified uniquely as in this example, the crawler ignores the

event.

A more powerful alternative for DOM element identification is explained next.

Method 2 - Element Identifier based on Element Characteristics and Neigh-

borhood Influence: We have implemented an alternative method [60] to identify DOM

elements. This new method is more powerful than the previous one at differentiating

between the elements that have identical HTML code.

Crawler Implementation 79

Figure 6.2: A page containing a table (left) and the body of the corresponding HTML

document (right)

This alternative method consists of two phases. In the first phase, an “element

characteristic identifier” is produced for each DOM element that has an event, using the

following information about the element

• the tag name of the element (e.g., <td>, <a>)

• the name,value pairs for a chosen set of attributes. For example, a possible set may

contain id, title, href, src, name, class, and the event attributes like onmouseover,

onmouseenter, onclick etc.

• the text content of the element

If the element characteristics is enough to differentiate an element from the other

elements in the DOM, then the element characteristic identifier is used as the identifier for

the element. If there are multiple elements with the same element characteristic identifier,

then the second phase of the algorithm tries to add some “neighborhood influence” to

differentiate between such elements. In other words, for each element x in a set of

elements that have identical characteristic identifiers, we check if some element that is

Crawler Implementation 80

close to x in the DOM-tree can provide information that can allow us to differentiate x

from the other elements in the set.

That is, given a set, X = {x1, x2, . . . xn}, of elements that have the same element

characteristics identifiers, the second phase applies the following steps.

1. Pick an element from X, say x1 (it does not matter which one is picked)

2. Taking x1 as the starting point, start traversing the DOM in a Breadth-First man-

ner and apply the following steps at each visited element (this traversal is not

limited to the subtree of x1: the ancestors of x1 are also visited in addition to the

descendants of x1)

(a) Let y be the currently visited element and let relXPath be the relative XPath

from x1 to y

(b) For each element xi ∈ X, identify the element zi that is reached following

the relXPath starting from xi. If zi does not exist for an xi, continue the

Breadth-First traversal with the next element in the DOM (go to step 2a).

Otherwise, compute a new identifier for xi by appending relXPath and the

element characteristic identifier of zi to the element characteristic identifier of

xi.

(c) If the new identifier of each xi is unique, then stop the Breadth-First traversal

and use these new identifiers. Otherwise, continue traversal with the next

element (go to step 2a).

As an example, consider the three elements with identical HTML code from Figure

6.2:

<td style="color:blue"> Remove </td>

The element characteristics ids for these three elements will be the same:

td,Remove

where comma is used as a delimiter between different components of a element charac-

teristic id. For these elements, the following unique identifiers will be obtained after the

second phase is applied.

td,Remove;./../*[1];td,id,1,1

td,Remove;./../*[1];td,id,2,2

td,Remove;./../*[1];td,id,3,3

Crawler Implementation 81

Each id is obtained by combining the characteristic id of an element “td,Remove”, the

relative XPath “./../*[1]” (which points to the first sibling of the element in this case)

and the characteristic id of the element that is pointed by the relative XPath in each

case.

It is still possible that there can be a set of elements that cannot be uniquely identified

even after the second phase. If that happens, we do not try any further and simply ignore

these events.

Event Types

Our crawler currently supports the mouse events and the events which are defined on

the href attribute of anchor tags using the “javascript:” prefix (which are also mouse

events since they are triggered when the anchor is clicked).

The mouse events that are considered are mouseover, mouseenter, mousedown, mouse-

up, click, dblclick, mouseout and mouseleave. Instead of considering all these mouse

events as individual events, we create “composite” events that execute these events in a

specific sequence. The reason for doing this is to better simulate a user’s behavior. For

example, when a human user wants to click on an element in the browser, she has to

first move the mouse over the element. This will trigger the mouseover and mouseenter

handlers. Then, she will be able to click it. In addition, a mouse click event handler

is only triggered after the mousedown and mouseup handlers are executed. It is also a

typical user behavior to move the mouse away from the element once it is clicked and

this will cause mouseout and mouseleave handlers to be triggered.

We have defined two composite mouse events: one is simulating a mouse interaction

sequence without the double click event and the other simulating a double click. The

first composite mouse event executes the following sequence: <mouseover, mouseenter,

mousedown, mouseup, click, mouseout, mouseleave>. For an element to have this com-

posite event, it is not necessary for the element to have all the mouse events in this

sequence defined. For example, for an element that only has mouseover and mousedown

defined, the composite event is still created; when the composite event is triggered, it

will run first the mouseover handler and then the mousedown handler.

The second composite mouse event is a sequence that simulates a double click:

<mouseover, mouseenter, mousedown, mouseup, click, mousedown, mouseup, click, dbl-

click, mouseout, mouseleave>. For an element to have this composite event, the element

has to have a dblclick handler defined. Since all the other mouse handlers are already con-

sidered by the previous composite event, there is no point of having a second composite

Crawler Implementation 82

event if the element does not have a dblclick handler.

6.4 DOM Equivalence

Our crawler uses AppScan’s DOM Equivalence algorithm [12] with a slight modification.

The original algorithm implemented in AppScan produces an identifier for a given DOM

by only considering the underlying HTML structure without taking into account the

events enabled in the DOM. Since this algorithm only considers the HTML structure, in

the remainder we refer to the identifier produced by this algorithm as HTML ID. How

this algorithm works is explained below.

As we discussed in Section 2.3, it is important to require that the DOMs in the

same equivalence class have the same set of enabled events. For this reason, our DOM

identifiers are the combination of the HTML ID produced by AppScan and an identifier

generated for the set of enabled events in the DOM. The latter identifier is simply pro-

duced by first sorting the set of event identifiers enabled in the DOM into a list and then

concatenating the individual event identifiers in the list.

6.4.1 Computing the HTML ID

The algorithm aims at identifying the pages with similar page structure by reducing

the repeating patterns in a given HTML to reach a canonical representation of the

HTML document such that the canonical representation will be the same for any other

structurally equivalent document.

The motivation of the algorithm comes from the observation that HTML pages often

contain sub-structures that are containers for similar items, such as lists and tables.

Modifying the items in the container, such as adding/removing items or sorting the

items in a different order, usually does not change the structure of the container. To

enable the crawler to detect such containers, the algorithm looks for repeating patterns

in a document. Then, it reduces these repeating patterns in order to recognize the same

container even when the items in the container are modified.

For example, Figure 6.2 shows an HTML table that consists of rows, <tr> elements,

and each row contains columns, <td> elements. When all the text and attributes are

stripped from the HTML (leaving only the HTML tags), the subtree rooted at <tbody>

looks like

Crawler Implementation 83

<tbody>

<tr><td></td><td><a></td><td></td></tr>

<tr><td></td><td><a></td><td></td></tr>

<tr><td></td><td><a></td><td></td></tr>

</tbody>

where each row <tr> follows the same pattern. The algorithm recognizes such patterns

and reduces them. In this example, the subtree would be like the following after the

reduction.

<tbody>

<tr><td></td><td><a></td><td></td></tr>

</tbody>

By finding such repetitive patterns, the algorithm aims at dividing a page into its

sub-structures. An element whose subtree follows a repeating pattern of child elements is

considered as a sub-structure since the repetition is seen as an indication that the element

is a container for similar items. By reducing the repetitions, the crawler can recognize

the same sub-structure even if the number of items contained in it changes. In addition,

once all the reductions are done in a subtree, the algorithm sorts the remaining tags so

that the algorithm is not affected by reordering of the elements inside a sub-structure.

As a result, the produced identifier for a page will not change when a sub-structure is

modified by adding or removing items in it or when its items are presented in different

orders.

The algorithm allows the user to configure which HTML tags and attributes to con-

sider, as well as whether to include the text content for the computation of the HTML

ID. When provided an HTML page, the algorithm produces the identifier by applying

the following steps:

1. The HTML is stripped out of anything that is not included in the user configuration.

2. Algorithm identifies a parent node whose children are all leaf nodes in the tree.

3. Algorithm traverses the leaf nodes and at each leaf node, it checks if the sequence

of already traversed leaves and the current leaf node forms a pattern. A pattern is

detected if the sequence contains consecutive repeating elements. For example, the

sequence <A><C><A><C> contains the consecutive repeating pattern

Crawler Implementation 84

<A><C>, whereas <A><C><D><A> has no consecutive repeating

pattern. Although <A> is repeated, the repetition is not consecutive.

4. When such a repeating pattern is detected, all the repetitions are eliminated.

5. When the last leaf node of the parent is processed, the reduced sequence is sorted

and the parent node is turned into a leaf node containing the reduced sequence. For

example, when the last leaf in the leaf node sequence <A><C><A><C>

of the parent <Parent> is processed, the result would be a new leaf node

<Parent><A><C></Parent>

(i.e. a leaf node <Parent> with text "<A><C>").

6. Steps 2-5 are repeated until the stripped HTML is reduced to a single node. At

this point, the resulting node uniquely identifies the equivalence class of the HTML

page. By hashing the content of the node, the HTML ID is produced.

The configuration we used for the experimental study presented in this thesis includes

the text content, all HTML tags and none of the attributes.

6.5 Conclusion

The crawler used in this research has been built as a prototype of IBM Security AppScan.

To build the prototype, we have used some of the existing components of the AppScan.

These are the DOM equivalence algorithm, the embedded browser, and the ability to

detect elements which have registered events. On top of these functionalities, we have

implemented the crawling strategies (except for the Greedy and the Menu, all strategies

are implemented by me). In addition, the algorithms to produce event identifiers are

implemented by me as part of this research.

Chapter 7

Experimental Results

7.1 Introduction

In this chapter, we present our experimental results comparing the performances of the

crawling strategies for RIAs. The experiments were conducted using five real AJAX-

based applications and three test applications.

For each application and for each strategy, we present two sets of measurements:

1. the cost (time) to discover the states of the application,

2. the cost (time) to complete the crawl.

We are primarily interested in the first set of measurements. According to our defini-

tion of strategy efficiency (explained in Section 1.3.3), the first set of measurements show

how efficient the strategy is for an application. However, (as we discussed in Section

1.3.5) we have to crawl each application completely to obtain the first set of measure-

ments since the crawler cannot know for sure that all the states are discovered until all

transitions are taken at least once.

In addition to comparing the performances of strategies with each other, we also

present the optimal cost to discover all the states in each application. This optimal cost

is obtained after the model of the application is known.

The remainder of this chapter is organized as follows. In Section 7.2, we define our

cost metric used to measure efficiency. In Section 7.3, we list the strategies with which

we compare the Hypercube and the Probability strategies and explain how the optimal

cost is obtained. In Section 7.4, our subject applications are introduced. In Section 7.5,

we explain the details of how the experiments were conducted and how the correctness

85

Experimental Results 86

of the produced models were verified. The costs of discovering states are presented in

Section 7.6 and the costs for completing the crawl are presented in Section 7.7. In Section

7.8, we present the time measurements. Finally, Section 7.9 concludes the chapter.

7.2 Measuring Efficiency

We define the efficiency of a strategy in terms of the time the strategy needs to discover

the states of the application. Instead of time measurements, we usually assess the effi-

ciency of a strategy by the number of events executed and the resets used by the strategy

during the crawl. This is because, the time measurements also depend on factors that

are external to the crawling strategy, such as the hardware used to run the experiments

and the communication delays, which can be different in different runs. In addition, the

event executions and resets normally dominate the crawling time and they only depend

on the decisions of the strategy. Nevertheless, we also provide time measurements in

Section 7.8.

7.2.1 Cost Calculation

We combine the number of resets and the event executions used by a strategy to define

a cost unit as follows.

• We measure for each application:

– t(e)avg: the average event execution time. This is obtained by randomly

selecting a set of events in the application, measuring the execution time of

each event in the set by simply executing the event once, and taking the

average of the measured times.

– t(r)avg: the average time to perform a reset. This is obtained by loading the

URL of the application multiple times: the time for each reload is measured

and the average is taken.

• For simplicity, we consider each event execution to take t(e)avg time and use this

as a cost unit.

• We calculate “the cost of reset”: cr = t(r)avg/t(e)avg.

• Finally, the cost of a strategy to find all the states of an application is calculated

by

Experimental Results 87

ne + nr × cr

where ne and nr are the total number of events executed and resets used by a

strategy to find all the states, respectively1.

7.3 Strategies Used for Comparison and the Optimal

Cost

We compare the model-based crawling strategies defined in this thesis (i.e., Hypercube

and Probability) with the following strategies.

• The Breadth-First and Depth-First Strategies: These are the standard

crawling strategies. The Breadth-First strategy explores the states in the order

they are discovered (i.e., the state discovered earlier is explored first). The Depth-

First strategy explores the states in the reverse order of their discovery (i.e., the

most recently discovered state is given priority). To have a fair comparison with

other strategies, our implementations of the Breadth-First and the Depth-First are

optimized, so that the shortest known transfer sequence is used to reach the state

where an event will be explored. The “default” versions of the Breadth-First and

the Depth-First (simply resetting to reach a state) fare much worse than the results

presented here.

• The Greedy Strategy: The Greedy strategy [62] is a simple strategy that prefers

to explore an event from the current state, if the current state has an unexplored

event. Otherwise, it explores an event from a state that is closest to the current

state.

• The Menu Strategy: The Menu strategy [26] is another model-based strategy

(see Section 5.2 for an overview).

• The Optimal Cost to Discover All States: We also present the optimal cost

required for discovering all the states of an application. The optimal cost can only

1We measure the cost of reset before crawling an application and provide it as a parameter to each

strategy. A strategy, knowing how costly a reset is compared to an average event execution, can decide

whether to reset or not when transferring from the current state to another known state. Although our

measurements on the test applications show that the cost of reset is greater than 1, it does not mean it

cannot be less than or equal to 1.

Experimental Results 88

be calculated after the model of the application is obtained and can only be used

as a benchmark. To calculate the optimal cost, we solve the Asymmetric Traveling

Salesman Problem (ATSP) which is the problem of finding a path that visits all

the nodes of a known graph with the minimum cost. We use an exact ATSP solver

[22] to get an optimal path.

7.4 Subject Applications

In this experimental study, we used five real AJAX applications and three test applica-

tions. There are several difficulties that prevented us from using a larger number of real

applications in this study: Our crawler, like the other available tools, is an experimental

crawler. Our crawler implements its own embedded browser, and this has very important

advantages that enable our crawler to overcome some of the limitations of the crawlers

that work by driving external browsers2. However, our crawler’s browser implementa-

tion uses some stub methods which are sometimes insufficient to realize the JavaScript

functionality required by the RIA. In such cases, an effort is required to make necessary

adjustments to crawl the application. This effort is not related to the crawling strategies

explained in this thesis, but to execute the client-side code of the application correctly.

We often need to improve the crawler to handle the JavaScript execution correctly, or if

possible, we modify the JavaScript code of the application by replacing the JavaScript

functionalities that are not supported by our crawler with alternative ones that work

with our crawler and still allows the application function correctly.

Another difficulty with using real applications is that we need a local version of

each application for crawling. We do not want to stress a publicly available application

with the large amount of requests generated during the crawl since this may degrade

2An important task for a RIA crawler is to detect the DOM elements that have registered event

handlers. When event handlers are registered dynamically using JavaScript (with addEventListener

method explained in Section 6.3.1), unless the crawler itself implements a browser (and thus maintains

the event handlers itself), it is currently not possible for the crawler to automatically detect if an element

has such an event handler or not. This is because, currently this information is not accessible through the

DOM interface. Since our crawler implements its own browser, it can detect such events automatically

at run-time. But, for the tools which rely on external browsers, this is not possible. For example,

Crawljax[55] is based on Selenium WebDriver (http://docs.seleniumhq.org/projects/webdriver/) which

is an API to simulate user actions on a real browser. Since Crawljax depends on an external browser, it

cannot detect such events automatically; the user needs to explicitly configure Crawljax by specifying

which elements to interact with in an application.

Experimental Results 89

the availability of the application for its real users and be considered a denial-of-service

attack against the server. Also, the applications that are available on the public domains

may change over time. This may prevent the reproducibility of the experiments in the

future. For these reasons, we use applications that are either open-source or that we can

replicate on a local server.

We describe the real applications in Section 7.4.1, followed by the test applications

in Section 7.4.2. Table 7.1 shows the number of states, the number of transitions, and

the measured cost of reset for each application.

Name Number of States Number of Transitions Cost of Reset

Real Applications

Bebop 1,800 145,811 2

Elfinder 1,360 43,816 10

FileTree 214 8,428 2

Periodic Table 240 29,034 8

Clipmarks 129 10,580 18

Test Applications

TestRIA 39 305 2

Altoro Mutual 45 1,210 2

Hypercube10D 1,024 5,120 3

Table 7.1: Subject Applications

7.4.1 Real Applications

Bebop

Bebob3 is a real application which allows browsing a list of publication references. As

shown in Figure 7.1, the top portion of the application contains a set of events for filtering

the displayed references according to different categories (by year, by document type, by

author etc.). The references are displayed at the bottom the page. For each reference,

the names of the authors and the publication year also act as filters (i.e., when they are

clicked, the reached page shows the publications of the author or the publications in that

year). When the title of a reference (or the arrow icon under a reference) is clicked, more

details about the reference are shown. This also enables another event which shows the

Bibtex entry for the reference. For experiments, we used a version of the application

where the total number of references that can be listed is 5. The application has 1,800

3http://people.alari.ch/derino/Software/Bebop/index.php

(Local version: http://ssrg.eecs.uottawa.ca/bebop/bebop/)

Experimental Results 90

Figure 7.1: A state in Bebop where all publications are listed and the details of one of

the publications has been expanded.

states and 145,811 transitions. The measured cost of reset is 2.

Elfinder

Elfinder4 is a real application in the form of an AJAX-based file manager. The application

allows browsing folders and files in a file system. For this experimental study, we used a

simplified version of this complex application. The version we crawled contains (under

the root folder) a single folder with three image files in it. Even for such a small instance,

there are 1,360 states and 43,816 transitions. To be able to crawl this application, we

have disabled the functionalities that change the server-side of the application, such as

modifying existing files and folders (editing, renaming etc.) and creating new items etc.

As it can be seen in Figure 7.2, the navigation is achieved by using the file tree on the left

or double-clicking on the folder icons on the right. In addition, up and home buttons on

4http://elfinder.org/ (Local version: http://ssrg.eecs.uottawa.ca/emre/elfinder/)

Experimental Results 91

Figure 7.2: A state in Elfinder where the preview of the selected item is shown in the

preview window.

the toolbar can be used for going to the parent folder and going back to the root folder,

respectively. The view button on the toolbar switches how the items are displayed: as

large icons, or as small icons in a list. Also on the toolbar, there is a preview button

that shows the preview of a selected file or folder. The preview window can be switched

between full screen and windowed mode. Using the previous and next buttons on the

preview window, the previews for the next and the previous items in the current folder

can be displayed. The measured cost of reset is 10.

FileTree

FileTree5 is a real application which allows navigating a folder structure. As shown

in Figure 7.3, clicking on a folder expands the folder (shows the folders and the files

contained in the clicked folder). For this study, we used a version that uses the directory

structure of the Python source code. The application has 214 states and 8,428 transitions.

The measured cost of reset is 2.

Experimental Results 92

Figure 7.3: A state in FileTree

Figure 7.4: The state reached after clicking Hydrogen in Periodic Table

Periodic Table

Periodic Table6 is a real application which is an AJAX-based periodic table. It contains

the 118 chemical elements in an HTML table. As shown in Figure 7.4, clicking on an

element in the table displays some information about the chemical element in a window.

At any time, the window contains only the information of the last clicked element.

Except for the initial state, each of these states is reachable from any other, thus forming

a complete graph. Also, there is an event at the top of each page (Toggle Details)

5http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/

(Local version:http://ssrg.eecs.uottawa.ca/filetree python/)
6http://code.jalenack.com/periodic/ (Local version: http://ssrg.eecs.uottawa.ca/periodic/)

Experimental Results 93

which switches the style of the current page between two alternative styles. This creates

another complete graph such that two complete graphs are connected to each other with

the instances of this toggle event. The application has 240 states and 29,034 transitions.

The measured cost of reset is 8.

Clipmarks

Figure 7.5: The Initial State of Clipmarks

Clipmarks7 is an AJAX-based real application which allows its users to share parts

of any webpage (images, text, videos etc.) with other users. For this experimental study,

we used a partially replicated copy of the application. The initial page (shown in Figure

7.5) contains on the left hand side a list of clips which have recently been “popped”

(voted as worth seeing) by other users. For each clip in the list, the title of the clip, the

user sharing the clip, and the number of pops clip received are displayed. By clicking

on the number of pops for a clip, the list of users who voted for the clip displayed in a

dialog window. Clicking on the title of a clip item in the list loads the content of the

clip on the right hand side of the page. A user may choose to share the displayed clip

on other social networking sites, start following the user who posted the clip, or pop the

clip. Each of these actions opens/changes the content of the dialog window. For this

experimental study, we limited the number of clips in the list to three. The application

has 129 states and 10,580 transitions. The measured cost of reset is 18.

7http://clipmarks.com/ (Local version: http://ssrg.eecs.uottawa.ca/clipmarks/)

Experimental Results 94

7.4.2 Test Applications

TestRIA

Figure 7.6: The Initial State of TestRIA

TestRIA8 is an AJAX-based test application created by our research group. The

application (shown in Figure 7.6) is in the form of a typical company website (or a

personal homepage). Each state of the application contains 5 menu items at the top:

Home, Services, Store, Pictures, Contact. Each of the menu items leads to a different

section of the website. Home leads to the initial state and Services leads to a page where

the services offered are listed as a side menu. Store leads to a page where the user can

navigate the products the company offers. Pictures leads to a page where two photo

albums can be viewed. In addition to the menu events, the application also contains the

common previous/next style navigation in its Store and Pictures sections. TestRIA has

39 states and 305 transitions. The measured cost of reset is 2.

Altoro Mutual

Altoro Mutual9 is a test application for a fictional bank (shown in Figure 7.7). Originally,

this is a traditional web application developed by the AppScan team, but we created an

AJAX version of the website where each hyperlink is replaced with a JavaScript event that

retrieves the content using AJAX. The application has 45 states and 1,210 transitions.

The measured cost of reset is 2.

8http://ssrg.eecs.uottawa.ca/TestRIA/index.htm
9http://altoromutual.com

Experimental Results 95

Figure 7.7: The Initial State of Altoro Mutual

Hypercube10D

Hypercube10D is an AJAX test application which has the structure of a 10 dimensional

hypercube (shown in Figure 7.8). This application represents the best case for the Hy-

percube strategy. The application has 1,024 states and 5,120 transitions. The measured

cost of reset is 3.

Figure 7.8: The Initial State of Hypercube10D

7.5 Experimental Setup

We run each strategy 25 times on each application. In each run, the events of each state

are randomly shuffled before they are passed to the strategy. The presented results are

Experimental Results 96

the average of these runs. The aim here is to eliminate the influence of exploring the

events of a state in a certain order. This is because, a strategy which does not have an

exploration priority for the events on a state (this is always the case for the Breadth-

First, the Depth-First and the Greedy) explores the events of the state in the order the

events are provided to the strategy, which may improve or worsen the time required to

infer the model. We would like to minimize the effect of this order.

To reduce the time it takes to run an experiment, we simulated the strategies on the

applications’ models. That is, we first crawled each application to obtain the model of

the application and saved this model in the hard drive. During a simulation, we feed

this model to a strategy. From the point of view of the crawling strategy, there is no

difference between a simulation and an actual crawl (i.e., the same implementation of

each crawling strategy can be used for a simulation and an actual crawl). We used this

approach since it takes very long time to crawl some of the subject applications with

the standard strategies, especially Depth-First. For example, it takes 4 days to crawl

Bebop with the Depth-First strategy. Simulations save us time since there are not any

JavaScript execution and communication delays when running a simulation. Simulations

are enough to obtain the information required to compute the cost of each crawl: the

number of events executed and the number of resets. However, we also provide the

time measurements which are obtained by actually crawling each application with each

strategy once.

In Chapter 6, we explain the DOM equivalence and the event identification mecha-

nisms used by our crawler. We used element identifiers based on HTML code (i.e., the

first method explained in Section 6.3.2) to produce event identifiers for all subject appli-

cations, except for Elfinder and Bebop. For Elfinder and Bebop, element characteristics

and neighborhood influence method (i.e, the second method explained in Section 6.3.2)

was used since these applications contain events which cannot be differentiated by the

first event identification method.

To verify that the model extracted by our crawler is a correct model of the appli-

cation behavior, we manually checked the states and transitions in the model against

the observed behavior of the application in an actual browser. To ease this verification

process, we have developed a model visualization tool which can represent the extracted

model as a directed graph (shown in Figure 7.9). The tool also allows us to replay in an

actual browser the transitions the crawler traversed to reach a state.

For the Probability strategy, the initial probability is taken as 0.75 by setting ps = 0.75

and pn = 1. This value has been chosen, because it gives slightly better results than the

Experimental Results 97

Figure 7.9: On the left, the visualization tool shows the extracted model of FileTree

partially (the tool is configured not to show all the transitions for a clearer picture).

When a node is clicked on the graph, the state corresponding to the clicked node is

opened in a real browser as shown on the right. This state is reached automatically by

replaying the events taken by the crawler in the browser.

other values we have experimented with (the results when other initial probabilities are

used are given in Section A.4 of Appendix A).

7.6 State Discovery Results

In this section, we compare the efficiencies of the strategies using our cost metric defined

in Section 7.2.1. According to the our definition of the efficiency, a strategy is more

efficient if it discovers the states earlier. For this reason, the costs we present in this

section are the costs up to the point when all the states of an application are discovered.

Discovering all the states does not mean the termination of the crawl since the crawl

continues until all the events are explored. The costs at the time of termination are

presented in Section 7.7.

For each application and strategy, we present a plot that shows the costs required by

the strategy to discover the states of the application. The x-axis of the plot is the number

Experimental Results 98

of states discovered and the y-axis is the cost. A point (x, y) in the plot of a strategy

means that when the number of states discovered by the strategy reached x, the total

cost of the crawling since the beginning was y. Since the states may not be discovered in

the same order by the strategies, the x-th states discovered by different strategies are not

necessarily the same. These plots help us to see a strategy’s progress during the crawl

and determine how quickly the strategy discovers the states. For a better presentation,

we use logarithmic scale. The cost required by a strategy to discover all the states is

shown next to the last point of the corresponding plot.

The results show that model-based crawling strategies and the Greedy strategy are

significantly better than the Breadth-First and the Depth-First. In addition, the Menu

and the Probability are comparable to each other and are the most efficient of all in

most cases. The Hypercube strategy behaves very similar to the Greedy strategy when

the application does not follow the hypercube model at all. This is not surprising,

given the fact that the Hypercube strategy always tries to explore an event from a state

that is closer to the current state when the application does not follow the Hypercube

meta-model. That means, the Hypercube strategy falls back to a Greedy strategy when

the application does not follow the meta-model. However, there is a slight difference

between the Greedy strategy and the Hypercube. Between two states that are at the

same distance from the current state, the Hypercube strategy prefers to explore an event

from the state that has larger number of events (in the same case, the Greedy strategy

has no preference). This is because, according to the Hypercube assumptions, the state

with more enabled events have a larger anticipated model, which means more chances of

discovering a new state.

Experimental Results 99

7.6.1 Bebop

200 400 600 800 1,000 1,200 1,400 1,600 1,800

101

102

103

104

105

106

107

Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:1,801

#:27,501
3:32,606

�:794,156
×:806,369
M:951,047

⊕:13,188,875

Figure 7.10: State Discovery Costs for Bebop (in log scale)

The state discovery plots for Bebop are shown in Figure 7.10. We see that the Probability

and the Menu are significantly better than the other strategies. The Hypercube and the

Greedy show very similar performances. The Breadth-First strategy follows these. The

Depth-First strategy is significantly worse than all the other strategies.

Experimental Results 100

7.6.2 ElFinder

200 400 600 800 1,000 1,200
101

102

103

104

105

106

1,360
Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:1,369

#:51,076
3:50,466

�:69,402×:69,085

M:186,028

⊕:2,000,559

Figure 7.11: State Discovery Costs for ElFinder (in log scale)

The state discovery plots for Elfinder are shown in Figure 7.11. The Probability and the

Menu perform similarly and better than the others. The Hypercube and the Greedy show

similar performances to each other. These are followed by the Breadth-First strategy.

The Depth-First strategy is significantly worse than the others.

Experimental Results 101

7.6.3 FileTree

20 40 60 80 100 120 140 160 180 200

101

102

103

104

105

214
Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:215

#:806

3:258

�:15,745
×:17,133
M:27,178

⊕:100,591

Figure 7.12: State Discovery Costs for FileTree (in log scale)

The state discovery plots for FileTree are shown in Figure 7.12. This application is

special in the sense that a new state is discovered when an event is explored for the first

time (a folder is expanded), but none of the subsequent explorations of the event produce

a new state. All the states in this application can be discovered by simply exploring each

event once. This is what is done by the Menu strategy initially: the Menu strategy gives

the highest priority to events that has not been explored at all. For this reason, the

Menu strategy performs close to optimal. The Probability strategy follows Menu and

it is significantly better than the rest. The difference between the Probability strategy

and the Menu is explained by the fact that in this application, the Probability strategy

prefers an event that is explored once over an event that is not explored yet (since an

event that is explored once has a higher probability). The Hypercube and the Greedy

Experimental Results 102

show similar performances and they are followed by the Breadth-First. The Depth-First

strategy is significantly worse than the other strategies.

7.6.4 Periodic Table

20 40 60 80 100 120 140 160 180 200 220 240

101

102

103

104

105

106

Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:247

#:28,985

3:16,363

�,×:30,046

M:88,947

⊕:968,148

Figure 7.13: State Discovery Costs for Periodic Table (in log scale)

The state discovery plots for Periodic Table are shown in Figure 7.13. It can be seen that

Hypercube, Probability, Menu and Greedy are more efficient than the Breadth-First and

the Depth-First. In this application, the first exploration of each event corresponding to

a chemical element results in a new state and all these events are present in any state.

Thus, a strategy that clicks on each element once easily discovers the half of the states.

For this reason, the Menu strategy, which explores each event once first, discovers half

of the states much faster than the others. Note that, Breadth-First also first explores all

Experimental Results 103

the events in the initial state and by doing so discovers half of the states. However, the

Breadth-First needs a reset before each event exploration to go back to initial state and

that increases the cost.

The Hypercube and Greedy strategy have very similar performances. They are faster

than the Menu strategy once half of the states are discovered.

At the beginning, the Probability strategy is a bit slower compared to Greedy, Hyper-

cube and Menu, but catches up once half of the states are discovered. The reason for the

difference at the beginning is that for this application, the Probability strategy prefers

events that are explored once over the events that are not explored yet since the first

exploration of each event leads to a new state. Thus, the Probability strategy explores

an event at least twice at the beginning, before trying an event that is not explored at

all (whereas the Greedy and Hypercube strategies pick any event). But, in the majority

of the cases the second exploration of an event do not lead to new states.

A peculiarity of this application is that each strategy discovers the last state much

more later than the rest of the states (i.e., the last point in each plot is significantly

higher than the preceding data point in the plot). This is because, the application has

a state that can only be reached through the initial state and the initial state is not

reachable from the other states unless a reset is used. Except for Breadth-First, all the

strategies go back to initial state towards the end of the crawl, once all the other states

are explored. Hence, the mentioned state is discovered much later than others. Since

Breadth-First explores all the events in the initial state first, it is not affected. However,

in the case of Breadth-First, there is still a noticeable gap between the last state and

the preceding state. This is explained by the fact that all states in this application is at

most two event executions away from the initial state, except for one that requires three

event executions. Since this state is at one level deeper than the rest of the states, it is

the last state discovered by the Breadth-First.

Experimental Results 104

7.6.5 Clipmarks

10 20 30 40 50 60 70 80 90 100 110 120

102

103

104

129
Number of States Discovered

C
os
t

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:164

#:11,315

3:5,134

�:11,199
×:11,390

M:28,906
⊕:19,776

Figure 7.14: State Discovery Costs for Clipmarks (in log scale)

The state discovery plots for Clipmarks are shown in Figure 7.14. The Menu and the

Probability strategies show comparable performance while Probability is slightly better

for the most part, it gets worse towards the end. The reason is that this application has

quite a large number of self-loop type events and the Menu strategy is able to classify

them correctly and postpone their exploration towards the end of the crawl. The Hy-

percube and Greedy strategies have similar performances and they follow the Menu and

the Probability. The Depth-First and the Breadth-First show the worst performances.

Experimental Results 105

7.6.6 TestRIA

5 10 15 20 25 30 35

101

102

103

Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:59

#:1173:100

�:891
×:902

M:1,214⊕:1,221

Figure 7.15: State Discovery Costs for TestRIA (in log scale)

The state discovery plots for TestRIA are shown in Figure 7.15. The Hypercube and the

Greedy show similar performances and they are significantly better than the Breadth-

First and Depth-First. The Probability and the Menu show the best performance and

one is not significantly better than the other.

Experimental Results 106

7.6.7 Altoro Mutual

5 10 15 20 25 30 35 40 45

101

102

103

104

Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Breadth-First Depth-First Greedy Hypercube
Menu Probability Optimal

∗:74

#:193

3:110

�:957

×:1,909

M:2,604

⊕:7,536

Figure 7.16: State Discovery Costs for Altoro Mutual (in log scale)

The state discovery plots for the Altoro Mutual are shown in Figure 7.16. This applica-

tion is the best case for the Menu strategy as it consists of Menu type events only. As

expected, Menu shows the best performance. The Probability strategy shows a compa-

rable performance to the Menu strategy. The Hypercube strategy follows the Probability

and it is better than Greedy strategy (preferring states with more events seems to be

advantageous in this application). The Depth-First and the Breadth-First are again

significantly worse than other strategies.

Experimental Results 107

7.6.8 Hypercube10D

200 400 600 800

101

102

103

104

105

1,024
Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

∗:2,402

#:10,240

3:10,258

�:2,834

×:10,275

M:43,403
⊕:35,303

Figure 7.17: State Discovery Costs for Hypercube10D (in log scale)

The state discovery plots for Hypercube10D are shown in Figure 7.17. This application is

the best case for the Hypercube strategy. For this application, there is a slight difference

between the optimal cost and the Hypercube strategy’s cost. As explained in Section

4.4.5, the Hypercube strategy deliberately executes more events during state exploration

to keep the total number of resets for the complete crawl minimal. (This is the number

of resets required not for discovering all the states, but for exploring all the transitions.

This number is presented in 7.4 in the next section.) The number of resets Hypercube

strategy uses to discover all the states (the number given in Table 7.2) is not affected

(i.e., it is optimal).

Unsurprisingly, the Hypercube shows the best performance for this application. The

Greedy and the Menu show very similar performances, whereas Probability is a bit worse

than these two. The Breadth-First and the Depth-First are significantly worse than the

Experimental Results 108

others.

7.6.9 Summary

Table 7.2 shows, for each application and for each strategy, the total number of event

executions and the number of resets required by the strategy to discover all the states

of the application (i.e., the data in this table corresponds to the last points of the plots

presented). Based on these two numbers, the cost of discovering all the states are cal-

culated and is shown next to them. The table also contains the optimal costs for each

application.

Table 7.3 shows the statistical variations (due to shuffling of events) of the costs to

discover all the states.

In all the cases, the model-based crawling strategies are significantly better than the

Breadth-First and the Depth-First. It can be seen that the Breadth-First strategy uses

significantly more resets and the Depth-First strategy executes significantly more events

than the others.

Experimental Results 109

Bebop Elfinder

Events Resets Cost Events Resets Cost

Depth-First 13,188,873 1 13,188,875 1,998,329 194 2,000,559

Breadth-First 933,592 8,727 951,047 115,702 7,033 186,028

Greedy 806,315 27 806,369 67,187 190 69,085

Hypercube 794,102 27 794,156 67,453 195 69,402

Menu 32,604 1 32,606 48,438 203 50,466

Probability 27,447 27 27,501 49,731 134 51,076

Optimal 1,799 1 1,781 1,359 1 1,369

FileTree Periodic Table Clipmarks

Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 100,589 1 100,591 967,724 53 968,148 18,971 45 19,776

Breadth-First 24,028 1,575 27,178 28,898 7,506 88,947 12,669 902 28,906

Greedy 17,107 13 17,133 29,622 53 30,046 11,024 20 11,390

Hypercube 15,719 13 15,745 29,622 53 30,046 10,932 15 11,199

Menu 256 1 258 16,201 20 16,363 4,615 29 5,134

Probability 804 1 806 28,969 2 28,985 10,862 25 11,315

Optimal 213 1 215 239 1 247 128 2 164

TestRIA Altoro Mutual Hypercube10D

Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 1,219 1 1,221 7,496 20 7,536 23,033 4,090 35,303

Breadth-First 1,106 54 1,214 1,939 333 2,604 28,070 5,111 43,403

Greedy 900 1 902 1,872 19 1,909 7,269 1,002 10,275

Hypercube* 889 1 891 905 26 957 2,078 252 2,834

Menu 98 1 100 101 4 110 7,258 1,000 10,258

Probability 115 1 117 179 7 193 7,251 996 10,240

Optimal 57 1 59 72 1 74 1,646 252 2,402

Table 7.2: The number of events executed, the number of resets used, and the cost (as

defined in Section 7.2) for discovering all the states. The numbers are rounded to the

nearest integer to increase readability.
* For Hypercube10D, the Hypercube strategy executes more events than the optimal since our imple-

mentation of the Hypercube strategy keeps exploring more events when the end of an MCD chain is

reached, rather than immediately resetting and following another MCD chain. Otherwise, these numbers

would be the same as explained in Section 4.4.5.

Experimental Results 110

B
eb

op
E

lfi
n
d
er

M
ea

n
S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

D
ep

th
-F

ir
st

13
,1

88
,8

75
43

2,
90

0
86

,5
80

12
,3

24
,0

13
13

,7
31

,0
41

2,
00

0,
55

9
82

,3
26

16
,4

65
1,

87
9,

52
5

2,
15

2,
36

8

B
re

ad
th

-F
ir

st
95

1,
04

7
51

8
10

4
95

0,
23

3
95

2,
19

6
18

6,
02

8
2,

36
3

47
3

18
1,

14
9

19
0,

04
0

G
re

ed
y

80
6,

36
9

3,
73

1
74

6
79

4,
35

8
81

1,
86

9
69

,0
85

53
8

10
8

67
,9

10
69

,9
51

H
y
p

er
cu

b
e

79
4,

15
6

2,
11

1
42

2
79

0,
81

1
79

7,
75

8
69

,4
02

51
1

10
2

67
,7

90
70

,1
47

M
en

u
32

,6
06

48
1

96
31

,0
85

33
,1

31
50

,4
66

18
,2

29
3,

64
6

32
,8

28
86

,6
50

P
ro

b
ab

il
it

y
27

,5
01

6,
30

0
1,

26
0

23
,0

36
54

,6
02

51
,0

76
5,

68
2

1,
13

6
41

,3
82

59
,5

07

F
il

eT
re

e
P

er
io

d
ic

T
ab

le
C

li
p

m
ar

k
s

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.
M

ea
n

S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.

D
ep

th
-F

ir
st

10
0,

59
1

9,
04

3
1,

80
9

80
,4

36
11

4,
48

5
96

8,
14

8
11

8,
75

6
23

,7
51

72
3,

70
4

1,
15

6,
16

3
19

,7
76

91
2

18
2

18
,2

52
22

,4
07

B
re

ad
th

-F
ir

st
27

,1
78

2,
22

8
44

6
24

,5
40

29
,3

17
88

,9
47

23
6

47
88

,7
50

89
,6

85
28

,9
06

44
7

89
27

,9
87

29
,5

30

G
re

ed
y

17
,1

33
27

1
54

16
,6

78
17

,8
29

30
,0

46
32

7
65

29
,5

84
30

,6
36

11
,3

90
33

8
68

10
,8

47
11

,8
39

H
y
p

er
cu

b
e

15
,7

45
42

3
85

14
,9

91
16

,3
02

30
,0

46
32

7
65

29
,5

84
30

,6
36

11
,1

99
24

1
48

10
,6

98
11

,4
91

M
en

u
25

8
3

1
25

2
26

4
16

,3
63

7,
26

1
1,

45
2

2,
57

1
26

,2
62

5,
13

4
3,

26
1

65
2

3,
22

9
11

,9
20

P
ro

b
ab

il
it

y
80

6
15

2
30

61
4

1,
20

9
28

,9
85

11
7

23
28

,8
20

29
,2

71
11

,3
15

61
7

12
3

9,
31

5
11

,7
08

T
es

tR
IA

A
lt

or
o

M
u

tu
al

H
y
p

er
cu

b
e1

0D

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.
M

ea
n

S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.

D
ep

th
-F

ir
st

1,
22

1
13

7
27

89
0

1,
50

6
7,

53
6

1,
05

7
21

1
6,

06
3

9,
67

9
35

,3
03

0
0

35
,3

03
35

,3
03

B
re

ad
th

-F
ir

st
1,

21
4

19
4

1,
17

8
1,

24
6

2,
60

4
32

4
65

2,
09

7
3,

02
3

43
,4

03
3

1
43

,3
91

43
,4

03

G
re

ed
y

90
2

19
4

87
2

94
0

1,
90

9
38

8
1,

81
5

1,
97

2
10

,2
75

1,
35

5
27

1
8,

37
0

12
,4

41

H
y
p

er
cu

b
e

89
1

18
4

85
6

92
3

95
7

48
10

85
6

1,
03

2
2,

83
4

3
1

2,
82

5
2,

83
8

M
en

u
10

0
4

1
93

10
7

11
0

6
1

99
11

9
10

,2
58

1,
34

8
27

0
8,

37
0

12
,4

41

P
ro

b
ab

il
it

y
11

7
8

2
99

13
3

19
3

8
2

18
1

21
3

10
,1

98
28

5
87

9,
80

3
11

,0
71

T
ab

le
7.

3:
S
ta

ti
st

ic
s

fo
r

th
e

co
st

s
to

d
is

co
ve

r
al

l
th

e
st

at
es

.
T

h
e

n
u
m

b
er

s
ar

e
ro

u
n
d
ed

to
th

e
n
ea

re
st

in
te

ge
r

to
in

cr
ea

se

re
ad

ab
il
it

y.

Experimental Results 111

7.7 Total Cost of Crawling

In Table 7.4, we present the costs for completing the crawling of the application (i.e.,

the costs when crawling terminates). Table 7.5 shows the statistical variations (due to

shuffling of events) of the costs to complete the crawl.

The results show that model-based crawling strategies have significantly better per-

formance than the Breadth-First and the Depth-First strategies since all model-based

crawling algorithms try to reduce the length of transfer sequences. The Greedy strategy

also shows a good performance similar to model-based strategies.

Experimental Results 112

Bebop Elfinder

Events Resets Cost Events Resets Cost

Depth-First 13,386,210 27 13,386,264 2,000,490 209 2,002,580

Breadth-First 943,001 8732 960,466 121,908 7,133 193,242

Greedy 826,914 27 826,968 68,684 209 70,774

Hypercube 816,142 27 816,196 68,539 209 70,629

Menu 814,220 27 814,274 77,846 223 80,078

Probability 816,922 27 816,976 68,568 233 70,902

FileTree Periodic Table Clipmarks

Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 101,409 13 101,435 968,027 236 969,915 19,246 72 20,550

Breadth-First 26,376 1,639 29,654 64,853 14,634 181,921 15,362 933 32,154

Greedy 20,763 13 20,789 29,925 236 31,813 11,397 56 12,402

Hypercube 19,860 13 19,886 29,925 236 31,813 11,351 56 12,357

Menu 19,709 13 19,735 37,606 236 39,494 11,716 70 12,985

Probability 19,341 13 19,367 29,584 236 31,472 11,458 61 12,561

TestRIA Altoro Mutual Hypercube10D

Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 1,378 1 1,381 7,513 34 7,581 23,050 4,098 35,344

Breadth-First 1,217 55 1,327 3,075 334 3,742 28,160 5,120 43,520

Greedy 1,001 1 1,003 2,509 34 2,577 8,866 1,260 12,646

Hypercube 996 1 998 2,483 34 2,552 8,860 1,260 12,640

Menu 973 1 975 2,463 35 2,533 8,866 1,260 12,646

Probability 973 1 975 2,451 35 2,521 9,327 1,340 13,348

Table 7.4: The number of events executed, the number of resets used, and the cost (as

defined in Section 7.2) when crawl terminates. The numbers are rounded to the nearest

integer to increase readability.

Experimental Results 113

B
eb

op
E

lfi
n
d
er

M
ea

n
S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

D
ep

th
-F

ir
st

13
,3

86
,2

64
18

7,
03

5
37

,4
07

13
,0

69
,1

74
13

,7
58

,5
14

2,
00

2,
58

0
82

,3
50

16
,4

70
1,

88
0,

49
7

2,
15

4,
75

9

B
re

ad
th

-F
ir

st
96

0,
46

6
98

20
96

0,
30

7
96

0,
59

9
19

3,
24

2
1,

60
3

32
1

19
0,

04
9

19
6,

54
0

G
re

ed
y

82
6,

96
8

1,
40

3
28

1
82

4,
14

8
83

0,
32

5
70

,7
74

84
17

70
,6

29
70

,9
77

H
y
p

er
cu

b
e

81
6,

19
6

39
8

81
6,

11
5

81
6,

27
0

70
,6

29
67

13
70

,4
52

70
,7

53

M
en

u
81

4,
27

4
31

6
81

4,
21

1
81

4,
32

3
80

,0
78

3,
84

7
76

9
76

,9
68

88
,8

80

P
ro

b
ab

il
it

y
81

6,
97

6
16

7
33

81
6,

62
3

81
7,

25
5

70
,9

02
58

4
11

7
70

,0
38

72
,1

68

F
il

eT
re

e
P

er
io

d
ic

T
ab

le
C

li
p

m
ar

k
s

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.
M

ea
n

S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.

D
ep

th
-F

ir
st

10
1,

43
5

9,
23

2
1,

84
6

81
,4

52
11

5,
45

5
96

9,
91

5
11

8,
77

9
23

,7
56

72
5,

47
1

1,
15

7,
84

9
20

,5
50

90
0

18
0

19
,1

27
23

,2
08

B
re

ad
th

-F
ir

st
29

,6
54

14
3

29
,6

24
29

,6
89

18
1,

92
1

9
2

18
1,

90
6

18
1,

93
6

32
,1

54
14

9
30

31
,8

39
32

,5
25

G
re

ed
y

20
,7

89
64

13
20

,6
58

20
,9

23
31

,8
13

13
3

31
,7

83
31

,8
49

12
,4

02
14

3
12

,3
65

12
,4

19

H
y
p

er
cu

b
e

19
,8

86
21

4
19

,8
50

19
,9

53
31

,8
13

14
3

31
,7

83
31

,8
49

12
,3

57
9

2
12

,3
36

12
,3

72

M
en

u
19

,7
35

33
7

19
,6

64
19

,7
80

39
,4

94
2,

69
3

53
9

34
,6

07
43

,1
12

12
,9

85
16

6
33

12
,7

57
13

,4
22

P
ro

b
ab

il
it

y
19

,3
67

40
8

19
,3

00
19

,4
43

31
,4

72
75

15
31

,3
87

31
,6

09
12

,5
61

62
12

12
,4

62
12

,7
36

T
es

tR
IA

A
lt

or
o

M
u

tu
al

H
y
p

er
cu

b
e1

0D

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.
M

ea
n

S
td

.
D

ev
.

S
td

.
E

rr
.

M
in

.
M

ax
.

M
ea

n
S

td
.

D
ev

.
S

td
.

E
rr

.
M

in
.

M
ax

.

D
ep

th
-F

ir
st

1,
38

1
11

1
22

1,
24

8
1,

66
1

7,
58

1
1,

06
0

21
2

6,
08

0
9,

75
7

35
,3

44
0

0
35

,3
44

35
,3

44

B
re

ad
th

-F
ir

st
1,

32
7

9
2

1,
30

9
1,

34
3

3,
74

2
28

6
3,

70
1

3,
80

3
43

,5
20

3
1

43
,5

08
43

,5
20

G
re

ed
y

1,
00

3
7

1
98

9
1,

01
5

2,
57

7
14

3
2,

54
3

2,
60

5
12

,6
46

2
0

12
,6

42
12

,6
51

H
y
p

er
cu

b
e

99
8

6
1

98
9

1,
01

8
2,

55
2

13
3

2,
52

2
2,

57
0

12
,6

40
0

0
12

,6
40

12
,6

40

M
en

u
97

5
2

0
97

1
98

0
2,

53
3

11
2

2,
51

4
2,

56
2

12
,6

46
2

0
12

,6
42

12
,6

51

P
ro

b
ab

il
it

y
97

5
1

0
97

3
97

7
2,

52
1

7
1

2,
50

6
2,

53
5

13
,3

78
18

5
37

12
,9

94
13

,9
04

T
ab

le
7.

5:
S
ta

ti
st

ic
s

fo
r

th
e

co
st

s
w

h
en

th
e

cr
aw

l
te

rm
in

at
es

.
T

h
e

n
u
m

b
er

s
ar

e
ro

u
n
d
ed

to
th

e
n
ea

re
st

in
te

ge
r

to
in

cr
ea

se

re
ad

ab
il
it

y.

Experimental Results 114

7.8 Time Measurements

The results that are presented in the previous sections are obtained by simulating the

strategies on the application models as we have explained in Section 7.5. In this section,

we present the time measurements obtained by actually crawling each application with

each strategy once. The time measurements are presented as Hours:Minutes:Seconds.

The seconds are rounded to the nearest integer to increase readability; a time measure-

ment of 00:00:00 means that the time spent is less than 0.5 seconds.

7.8.1 State Discovery and Complete Crawl Times

For each application, Tables 7.6-7.13 contain the cost and the time required by each

strategy to discover all the states of the application, as well as to complete the crawl of

the application.

As expected, the time measurements reflect the fact that strategies which execute

less events and less resets often require proportionately less time. The major source of

difference between the time measurements and our cost measurements is our simplifying

assumption that each event execution takes the same average time. As a result of this

simplification, for Clipmarks our measured value for cost of reset is a bit higher than the

real time delays incurred by the resets during crawling. This is why the Breadth-First has

more cost than Depth-First (since Breadth-First uses many resets), but actually Breadth-

First finishes earlier than Depth-First. Except for this case, the cost measurements are

in line with the time measurements.

It can be seen that an efficient strategy can discover the states much earlier, even if

the crawl takes a long time. For example, even though it takes 8 hours for Probability

to completely crawl Bebop, all the states are discovered in the first 13 minutes of the

crawl (as it can be seen in Table 7.6). Similarly Menu discovers all the states in this

application in the first 19 minutes while the crawl completes in 13 hours.

For Bebop and Elfinder, the Menu strategy completes the crawl much later than the

other strategies that require a cost comparable to the Menu (the Menu strategy still

discovers the states in a comparable time to the Probability and earlier than the other

strategies during the crawl though). This excess time is used for calculating a Chinese

Postman Path (CPP) which is used by the Menu strategy in its transition exploration

phase. Since these two applications have relatively larger models, it takes more time

to calculate a Chinese Postman Path for these applications. This is partly because, the

current code used to solve CPP is not implemented very efficiently[65]. The time required

Experimental Results 115

by the Menu to complete the crawl might be reduced with a better implementation of

the CPP algorithm10.

In all applications, the Breadth-First and the Depth-First require more time to dis-

cover all the states than the other strategies. The same is true for completing the crawl

with the exception of Menu on Bebop and Elfinder.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 12,542,684 1 12,542,686 93:42:14 13,006,646 27 13,006,700 97:05:22

Breadth-First 933,696 8,681 951,058 09:00:31 943,035 8,686 960,407 09:04:57

Greedy 803,966 27 804,020 08:17:07 827,830 27 827,884 08:32:04

Hypercube 796,356 27 796,410 08:10:36 816,187 27 816,241 08:22:54

Menu 32,960 1 32,962 00:18:49 814,148 27 814,202 12:48:55

Probability 23,451 27 23,505 00:12:50 817,044 27 817,098 07:54:03

Table 7.6: Costs and Time Measurements for Bebop. The time format is

Hours:Minutes:Seconds.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 1,999,241 199 2,001,231 55:15:56 2,000,239 209 2,002,329 55:17:30

Breadth-First 116,562 7,178 188,342 04:42:47 121,735 7,258 194,315 04:53:40

Greedy 66,806 185 68,656 02:18:56 68,534 209 70,624 02:21:47

Hypercube 66,886 184 68,726 02:19:29 68,481 209 70,571 02:22:05

Menu 41,915 201 43,925 02:01:29 75,346 213 77,476 08:23:26

Probability 39,526 200 41,526 01:09:14 68,152 278 70,932 02:03:43

Table 7.7: Costs and Time Measurements for Elfinder. The time format is

Hours:Minutes:Seconds.

10Some suggestions for optimizations are provided in [65].

Experimental Results 116

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 105,343 1 105,345 01:43:06 105,645 13 105,671 01:43:28

Breadth-First 21,654 1495 24,644 00:38:29 26,370 1,638 29,646 00:43:05

Greedy 17,134 13 17,160 00:29:57 20,755 13 20,781 00:33:42

Hypercube 16,243 13 16,269 00:29:10 19,887 13 19,913 00:33:02

Menu 253 1 253 00:00:15 19,741 13 19,767 00:33:40

Probability 779 1 779 00:00:36 19,360 13 19,386 00:31:37

Table 7.8: Costs and Time Measurements for FileTree. The time format is

Hours:Minutes:Seconds.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 860,312 7 860,368 05:37:45 860,661 236 862,549 05:38:02

Breadth-First 28,826 7,495 88,786 00:21:48 64,853 14,634 181,925 00:42:19

Greedy 29,574 7 29,630 00:14:44 29,923 236 31,811 00:15:06

Hypercube 29,574 7 29,630 00:15:20 29,923 236 31,811 00:15:42

Menu 16,846 4 16,878 00:08:49 41,082 236 42,970 00:20:06

Probability 28,904 2 28,920 00:14:15 29,525 236 31,413 00:14:42

Table 7.9: Costs and Time Measurements for Periodic Table. The time format is

Hours:Minutes:Seconds.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 18,617 46 19,445 00:14:44 18,799 71 20,077 00:14:52

Breadth-First 12,608 900 28,808 00:07:17 15,327 925 31,977 00:08:14

Greedy 10,748 7 10,874 00:04:11 11,390 55 12,380 00:04:28

Hypercube 10,732 7 10,858 00:04:12 11,363 56 12,371 00:04:29

Menu 3,106 9 3,268 00:01:55 11,623 69 12,865 00:04:22

Probability 11,114 33 11,708 00:04:32 11,492 62 12,608 00:04:39

Table 7.10: Costs and Time Measurements for Clipmarks. The time format is

Hours:Minutes:Seconds.

Experimental Results 117

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 1302 1 1,304 00:00:27 1,460 1 1,462 00:00:34

Breadth-First 1097 54 1,205 00:00:25 1,229 55 1,339 00:00:27

Greedy 884 1 886 00:00:20 1,006 1 1,008 00:00:21

Hypercube 882 1 884 00:00:19 995 1 997 00:00:21

Menu 96 1 98 00:00:03 974 1 976 00:00:21

Probability 127 1 129 00:00:04 973 1 975 00:00:21

Table 7.11: Costs and Time Measurements for TestRIA. The time format is

Hours:Minutes:Seconds.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 6,790 25 6,840 00:02:37 6,802 34 6,870 00:02:38

Breadth-First 1,635 352 2,339 00:00:54 3,076 353 3,782 00:01:25

Greedy 1,842 25 1,892 00:00:44 2,521 34 2,589 00:01:00

Hypercube 906 32 970 00:00:24 2,490 34 2,558 00:01:00

Menu 104 7 118 00:00:04 2,468 34 2,536 00:01:00

Probability 172 7 186 00:00:06 2,452 35 2,522 00:00:59

Table 7.12: Costs and Time Measurements for Altoro Mutual. The time format is

Hours:Minutes:Seconds.

Discovering All States Complete Crawl

Events Resets Cost Time Events Resets Cost Time

Depth-First 23,033 4,090 31,213 00:11:59 23,050 4,098 35,344 00:12:00

Breadth-First 28,070 5,111 38,292 00:15:05 28,160 5,120 43,520 00:15:07

Greedy 7,093 972 9,037 00:03:34 8,865 1,260 12,645 00:04:28

Hypercube 2,077 252 2,581 00:01:03 8,860 1,260 12,640 00:04:19

Menu 7,093 972 9,037 00:03:33 8,865 1,260 12,645 00:04:24

Probability 7,335 1,012 9,359 00:03:44 9,434 1,364 13,526 00:04:46

Table 7.13: Costs and Time Measurements for Hypercube10D. The time format is

Hours:Minutes:Seconds.

Experimental Results 118

7.8.2 Distributions of the Complete Crawl Times

Tables 7.14-7.21 show for each strategy how the complete crawl time is distributed among

the following operations:

• Strategy shows the total time spent by the crawling strategy. This time is spent

for deciding which event to explore next, calculating the transfer sequence to the

state where the next event will be explored, and updating the model that is being

extracted.

• Event Execution shows the total time required to execute events. This includes

the time executing JavaScript code, modifying the DOM accordingly, and the time

delays for AJAX calls.

• Reset shows the total time spent for resets.

• DOM ID shows the total time spent by the DOM Equivalence algorithm which

produces an identifier for the reached DOM after each event exploration. This

algorithm is not executed for the DOMs visited while executing a transfer sequence.

• Event ID shows the total time required to detect the events on a DOM, and

producing identifiers for these events. This is done after every event execution

(which includes the events executed in a transfer sequence) since we need to locate

an event first in order to execute it.

These tables also show the ratio of the time taken by each operation to the total

crawl time as a percentage.

Unsurprisingly, the results show that the crawling time is dominated by event ex-

ecutions and resets. For all strategies (except for Menu), event executions and resets

combined takes more than 75% of the crawl time in 6 out of the 8 applications. For the

remaining 2 applications (Periodic Table and Clipmarks), event executions and resets

take more than 60% of the crawl time. Event ID calculation is the most time consuming

operation after event executions and resets since event identifiers are calculated after

each event execution. DOM ID calculation usually does not take a significant amount

of time (usually less than 3%); however, in Clipmarks and Periodic Table it takes more

time to calculate DOM IDs than the other applications.

Except for Menu, the strategies themselves take insignificant amount of time during

the crawl (often less than 1%). Because of the Chinese Postman Path calculation in the

Experimental Results 119

transition exploration phase, the Menu strategy needs more time than the other strate-

gies. The differences are more significant for Bebop and Elfinder since these applications

have relatively larger models.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:03:44 0.06% 63:00:39 64.90% 00:00:02 0.0005% 00:05:08 0.09% 33:55:49 34.95% 97:05:22

Breadth-First 00:03:50 0.70% 06:52:53 75.76% 00:08:41 1.59% 00:05:16 0.97% 01:54:17 20.97% 09:04:57

Greedy 00:03:18 0.64% 06:30:31 76.26% 00:00:02 0.01% 00:05:31 1.08% 01:52:42 22.01% 08:32:04

Hypercube 00:04:33 0.90% 06:22:31 76.06% 00:00:02 0.01% 00:05:29 1.09% 01:50:19 21.94% 08:22:54

Menu 04:58:40 38.84% 06:03:28 47.27% 00:00:02 0.004% 00:05:10 0.67% 01:41:36 13.21% 12:48:55

Probability 00:08:10 1.72% 06:04:08 76.81% 00:00:02 0.01% 00:05:12 1.10% 01:36:31 20.36% 07:54:03

Table 7.14: Distribution of the Times to Complete the Crawl for Bebop. The time format

is Hours:Minutes:Seconds.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:13 0.01% 52:37:43 95.27% 00:03:18 0.10% 00:00:34 0.02% 02:32:41 4.61% 55:17:30

Breadth-First 00:00:10 0.06% 03:52:33 79.19% 00:54:11 18.45% 00:00:34 0.19% 00:06:12 2.11% 04:53:40

Greedy 00:00:12 0.14% 02:14:20 94.74% 00:01:41 1.19% 00:00:34 0.40% 00:05:00 3.53% 02:21:47

Hypercube 00:00:14 0.17% 02:14:33 94.70% 00:01:44 1.21% 00:00:34 0.40% 00:05:01 3.53% 02:22:05

Menu 05:43:29 68.23% 02:32:03 30.20% 00:01:45 0.35% 00:00:33 0.11% 00:05:36 1.11% 08:23:26

Probability 00:00:50 0.67% 01:55:44 93.54% 00:02:19 1.88% 00:00:33 0.45% 00:04:17 3.46% 02:03:43

Table 7.15: Distribution of the Times to Complete the Crawl for Elfinder. The time

format is Hours:Minutes:Seconds.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:01 0.02% 01:32:22 89.27% 00:00:03 0.05% 00:00:26 0.42% 00:10:36 10.24% 01:43:28

Breadth-First 00:00:01 0.05% 00:38:28 89.26% 00:02:55 6.79% 00:00:27 1.06% 00:01:13 2.84% 00:43:05

Greedy 00:00:01 0.06% 00:29:50 88.55% 00:00:03 0.17% 00:00:26 1.29% 00:03:21 9.93% 00:33:42

Hypercube 00:00:02 0.09% 00:29:00 87.76% 00:00:04 0.19% 00:00:27 1.35% 00:03:30 10.61% 00:33:02

Menu 00:00:13 0.65% 00:29:12 86.71% 00:00:03 0.17% 00:00:26 1.28% 00:03:46 11.18% 00:33:40

Probability 00:00:03 0.14% 00:28:07 88.90% 00:00:04 0.19% 00:00:26 1.38% 00:02:58 9.39% 00:31:37

Table 7.16: Distribution of the Times to Complete the Crawl for FileTree. The time

format is Hours:Minutes:Seconds.

Experimental Results 120

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:09 0.05% 04:22:43 77.72% 00:00:20 0.10% 00:03:10 0.94% 01:11:41 21.20% 05:38:02

Breadth-First 00:00:10 0.38% 00:11:31 27.21% 00:19:16 45.55% 00:04:35 10.82% 00:06:47 16.04% 00:42:19

Greedy 00:00:13 1.47% 00:08:48 58.25% 00:00:20 2.15% 00:03:17 21.70% 00:02:29 16.42% 00:15:06

Hypercube 00:00:13 1.40% 00:09:19 59.36% 00:00:20 2.10% 00:03:14 20.61% 00:02:36 16.53% 00:15:42

Menu 00:00:58 4.83% 00:11:40 58.02% 00:00:20 1.65% 00:03:24 16.87% 00:03:45 18.63% 00:20:06

Probability 00:00:19 2.20% 00:08:27 57.50% 00:00:20 2.21% 00:03:12 21.74% 00:02:24 16.35% 00:14:42

Table 7.17: Distribution of the Times to Complete the Crawl for Periodic Table. The

time format is Hours:Minutes:Seconds.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:04 0.48% 00:12:25 83.48% 00:00:13 1.43% 00:00:39 4.32% 00:01:32 10.29% 00:14:52

Breadth-First 00:00:04 0.87% 00:03:46 45.70% 00:02:27 29.66% 00:00:41 8.31% 00:01:16 15.47% 00:08:14

Greedy 00:00:05 1.68% 00:02:39 59.17% 00:00:10 3.69% 00:00:39 14.51% 00:00:56 20.95% 00:04:28

Hypercube 00:00:05 1.74% 00:02:38 58.81% 00:00:10 3.76% 00:00:39 14.64% 00:00:57 21.04% 00:04:29

Menu 00:00:13 5.03% 00:02:19 52.99% 00:00:12 4.64% 00:00:39 15.05% 00:00:58 22.29% 00:04:22

Probability 00:00:06 2.27% 00:02:44 58.98% 00:00:11 4.06% 00:00:39 14.11% 00:00:57 20.58% 00:04:39

Table 7.18: Distribution of the Times to Complete the Crawl for Clipmarks. The time

format is Hours:Minutes:Seconds.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:00 0.10% 00:00:32 94.47% 00:00:01 2.76% 00:00:00 0.73% 00:00:01 1.94% 00:00:34

Breadth-First 00:00:00 0.13% 00:00:23 84.95% 00:00:03 12.13% 00:00:00 0.89% 00:00:01 1.91% 00:00:27

Greedy 00:00:00 0.11% 00:00:20 92.25% 00:00:01 4.32% 00:00:00 1.22% 00:00:00 2.10% 00:00:21

Hypercube 00:00:00 0.21% 00:00:19 92.15% 00:00:01 4.48% 00:00:00 1.07% 00:00:00 2.09% 00:00:21

Menu 00:00:00 0.71% 00:00:19 91.74% 00:00:01 4.40% 00:00:00 1.06% 00:00:00 2.08% 00:00:21

Probability 00:00:00 0.26% 00:00:19 92.13% 00:00:01 4.47% 00:00:00 1.19% 00:00:00 1.95% 00:00:21

Table 7.19: Distribution of the Times to Complete the Crawl for TestRIA. The time

format is Hours:Minutes:Seconds.

Experimental Results 121

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:00 0.08% 00:02:27 93.58% 00:00:02 1.37% 00:00:02 0.99% 00:00:06 3.99% 00:02:38

Breadth-First 00:00:00 0.13% 00:01:05 76.30% 00:00:15 17.30% 00:00:02 2.41% 00:00:03 3.86% 00:01:25

Greedy 00:00:00 0.20% 00:00:53 89.45% 00:00:02 3.71% 00:00:02 2.68% 00:00:02 3.96% 00:01:00

Hypercube 00:00:00 0.28% 00:00:54 89.48% 00:00:02 3.49% 00:00:02 2.70% 00:00:02 4.05% 00:01:00

Menu 00:00:00 0.74% 00:00:53 88.96% 00:00:02 3.73% 00:00:02 2.62% 00:00:02 3.95% 00:01:00

Probability 00:00:00 0.36% 00:00:52 89.26% 00:00:02 3.66% 00:00:02 2.73% 00:00:02 3.98% 00:00:59

Table 7.20: Distribution of the Times to Complete the Crawl for Altoro Mutual. The

time format is Hours:Minutes:Seconds.

Strategy Event Execution Reset DOM ID Event ID Total

Time % Time % Time % Time % Time % Time

Depth-First 00:00:01 0.11% 00:06:48 56.66% 00:04:58 41.33% 00:00:03 0.42% 00:00:11 1.48% 00:12:00

Breadth-First 00:00:01 0.13% 00:08:24 55.56% 00:06:26 42.51% 00:00:04 0.39% 00:00:13 1.42% 00:15:07

Greedy 00:00:01 0.33% 00:02:36 58.26% 00:01:45 39.22% 00:00:02 0.78% 00:00:04 1.41% 00:04:28

Hypercube 00:00:01 0.22% 00:02:34 59.56% 00:01:38 37.96% 00:00:02 0.79% 00:00:04 1.47% 00:04:19

Menu 00:00:02 0.59% 00:02:39 60.52% 00:01:37 36.68% 00:00:02 0.78% 00:00:04 1.43% 00:04:24

Probability 00:00:02 0.74% 00:02:49 59.10% 00:01:49 38.02% 00:00:02 0.75% 00:00:04 1.39% 00:04:46

Table 7.21: Distribution of the Times to Complete the Crawl for Hypercube10D. The

time format is Hours:Minutes:Seconds.

7.9 Conclusion

We conducted experiments on five real AJAX-based RIAs and three test applications. We

evaluated strategy efficiency in terms of the number of events executed and the resets

used to discover all the states in an application. The results show that model-based

crawling strategies and the Greedy strategy discover the states by executing significantly

fewer events and resets than the Depth-First and the Breadth-First. The Breadth-First

strategy uses significantly more resets, and the Depth-First strategy executes significantly

more events than the others. The performance of the Hypercube strategy is similar to

the Greedy strategy when the application does not follow the Hypercube meta-model.

In most cases, the Probability and the Menu show comparable performances, and they

are the most efficient of all.

We also presented the time measurements. Time measurements show that event

executions and resets are normally the operations that dominate the time spent during

the crawl. The strategies that use fewer events and resets to discover the states also

Experimental Results 122

require less time. Thus, the Probability and the Menu strategy discover the states much

earlier than the others.

Except for the Menu strategy, the time it takes to complete the crawl is also in line

with the number of event executions and resets. Since the Menu strategy calculates a

Chinese Postman Path (CPP) for its transition exploration phase, the Menu strategy re-

quires more time to complete the crawl than the other strategies that execute comparable

number of events and resets. This is partly because of the inefficiency of the code used

to find CPP. The time for Menu might be improved by optimizing the implementation

of the CPP algorithm.

Chapter 8

Conclusion and Future Directions

8.1 Conclusion

With RIA technologies, the web applications have become more interactive and respon-

sive. Although this is an improvement in terms of user-friendliness, these technologies

come at the cost of not being able to use the crawling techniques established so far. It

is important to regain the ability to crawl RIAs to be able to search their content and

build their models for various purposes such as reverse-engineering, detecting security

vulnerabilities, assessing usability, and applying model-based testing techniques.

Compared with the research on crawling traditional applications, where solutions to

many different problems are proposed, the research on crawling RIAs is very recent. Even

the basic problem of efficiently discovering the pages in a RIA has not been addressed

completely. In our definition, an efficient strategy is the one that discovers the states of

the application as soon as possible. Discovering the states sooner is important because

more information will be available for analysis earlier, even if the crawl takes very long

time to complete. Although the majority of the existing research on crawling RIAs use

the standard crawling strategies, Breadth-First and Depth-First, these are not efficient

for crawling RIAs.

This thesis expands the research on crawling RIAs by providing crawling strategies

that are more efficient than Breadth-First and Depth-First. For this purpose, we follow

a general approach called model-based crawling. In model-based crawling, we design

crawling strategies that aim at discovering the states of the application as early as possible

during the crawl based on some anticipations about the behavior of the application. In

this thesis, we have presented two model based crawling strategies: an improved version

123

Future Work 124

of the first model-based strategy, the Hypercube strategy, and the Probability strategy.

To evaluate the performances of these strategies with the existing ones, a prototype

crawler for AJAX-based applications has been developed. We presented an experimental

study conducted on five real AJAX-based applications and three test applications. The

results show that model-based crawling strategies are more efficient than the standard

crawling strategies in all the cases. We have seen that the Hypercube strategy performs

similar to a Greedy strategy when the applications does not follow the model anticipated

by the Hypercube strategy, otherwise the Hypercube strategy is optimal. However, the

anticipations of the Hypercube strategy are not realized by most of the real applications,

so it is hard to find real examples where the Hypercube strategy uses its full potential.

On the other hand, the Probability strategy is more relaxed and is more efficient than the

Hypercube strategy on real RIAs. The performance of the Probability strategy is often

comparable to the Menu strategy (another model-based strategy), but the Probability

strategy is easier to implement than the Menu strategy.

We conclude the thesis with some future directions.

8.1.1 Adaptive Model-based Crawling

One important aspect of model-based crawling is to decide on a meta-model for which

the crawling strategy will be optimized. However, it is often difficult to predict a good

meta-model for an arbitrary application before crawling. A possible solution to this

problem might be using an adaptive model-based crawling approach. Instead of fixing

a meta-model before crawling, the crawler could start exploring the application using

a strategy that does not have strict assumptions and that is known to produce good

results, such as the Probability strategy. Once some initial information is collected using

this strategy, the partially extracted model could be analyzed by the crawler, and a

model-based strategy that would suit the application could be chosen.

This idea of dynamically choosing the meta-model can even be developed further,

so that a suitable meta-model could be constructed during the crawl. This would be

possible when the model of the application has some repeating patterns. For example,

we might detect that the instances of the same subgraph repeats itself in the partially

extracted model (as an example, we can think of a large application that uses the same

navigational pattern to present different content, like a web-based product catalog). In

that case, it could even be possible to generate an optimal strategy for such subgraphs.

Whenever the crawler can predict that some portion of the application is likely to follow

Future Work 125

this same structure, we can apply this dynamically generated, optimized strategy for

exploring that portion.

8.1.2 State-Space Explosion

RIAs tend to have large number of states. No matter how efficient the strategies we

design are, eventually all strategies are all susceptible to the state explosion problem

unless additional steps are taken. This is the reason why most of the time we had

to crawl small instances of the subject applications. This problem is often caused by

considering the whole page to define the states even though the page might consist of

parts that can be interacted independently. For example, each widget in a widget-based

application, like the one shown in Figure 8.1, can be interacted independent of each

other. Currently, every different combination of the contents of such independent parts

will be considered as a new state. However, the majority of such states will not contain

any new information. Being able to detect such independent components and crawling

each such component separately can be a possible way to address this problem.

Figure 8.1: A web page with multiple widgets

8.1.3 Greater Diversity

For a large RIA, it is not feasible to wait until crawling finishes to analyze the pages

discovered. The analysis of the discovered pages usually takes place while crawling still

Future Work 126

continues. Rather than exploring one part of the application exhaustively and keep

discovering new but very similar pages, we would like discover dissimilar pages as much

as possible earlier on during the crawl. For example, consider a web page has a long list

of events where each event leads to a similar page. It is not reasonable to explore each

of these events first, before trying something outside this list. This is true, especially

for testing, since the similar pages would probably have the same problems. It does not

have much use to find thousand instances of the same problem when finding one of them

would suffice to fix all the instances. For this reason, new techniques are needed that

would diversify the crawling and provide a bird-eye-view of the application as soon as

possible. To this end, crawling strategies may benefit from algorithms that will help

detecting similar pages, and events with similar functionality.

8.1.4 Relaxing the Determinism Assumption

Another common limitation of the current RIA crawling approaches is the determinism

assumption, that is, the expectation that an event will lead to the same state whenever it

is executed from a given state. This is not very realistic since most real web applications

may react differently at different times. Crawling strategies should be improved in order

to handle such cases.

8.1.5 Distributed Crawling

Another promising research area is to crawl RIAs using multiple concurrently running

processes to reduce crawling time. The existing distributed crawling techniques for tra-

ditional applications distribute the workload based on URLs. However, this would not

be sufficient in the context of RIA crawling, so new distributed crawling algorithms are

required for RIAs.

8.1.6 Mobile Applications

With the increasing popularity of mobile devices (smartphones, tablets etc.), there is

a growing number of applications developed specifically for such devices, called mobile

applications. An emerging research area aims at building models of mobile applications

for testing[8, 9, 35]. The crawling strategies that are designed for RIAs can easily be

adapted to build models of mobile applications. This is because, the crawling strategies

presented in this thesis do not rely on a particular technology. The underlying technology

Future Work 127

affects the algorithms to identity the states and the events, which are given to the crawling

strategy as inputs.

Appendix A

Experimental Results for

Alternative Versions of Probability

Strategy

A.1 Introduction

In this appendix, we present some further experimental results obtained using the al-

ternative versions of the Probability strategy (the alternative versions are introduced in

Section 5.6). In Section A.2, we present the results for alternative algorithms to choose

the next state. In Section A.3, we present the results for the alternative probability es-

timation methods and the aging technique. Section A.4 shows the results when different

values are used as the initial probability.

For compactness of presentation, we summarize the results using box plots. A box

plot is presented for each different version of the strategy. A box plot consists of a line

and a box on the line. The minimum point of the line shows the cost of discovering the

first state. The lower edge, the line in the middle and the higher edge of the box show

the cost of discovering 25%, 50% and 75% of the states, respectively. The maximum

point of the line shows the cost of discovering all the states.

A.2 Algorithms to Choose a State

In Figure A.1, we compare three different mechanisms to choose the state where the next

event should be explored:

128

Experimental Results for Alternative Versions of Probability Strategy 129

• Default: The default strategy as explained in Section 5.5.1 (where two states are

compared by using the iterated probability of the state that requires a shorter

transfer sequence).

• Alternative: The alternative strategy where the state that minimizes the expected

cost to discover a state is chosen.

• Simple: The simple strategy where the state that has the maximum probability

is chosen regardless of the transfer sequence required to reach the state.

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

D
ef
au

lt
A
lt
er
n
at
iv
e

S
im

p
le

100

101

102

103

104

105

Algorithm to Choose the Next State

C
os
t
(i
n
lo
g
sc
al
e)

Bebop Elfinder FileTree
Periodic
Table Clipmarks TestRIA

Altoro
Mutual Hypercube10D

Figure A.1: State Discovery Cost for Different Algorithms to Choose the Next State (in

log scale)

It can be seen that the default strategy is slightly better than the alternative version

in the case of FileTree, TestRIA and Altoro Mutual. In the other cases, they are similar.

In all the cases, the default version perform better than the simple strategy in terms

of the cost to discover 25%, 50% and 75% of the states. However, the simple strategy gets

better towards the end and makes up for the difference. It even discovers all the states

earlier than the default strategy in some of the cases. The most significant difference

Experimental Results for Alternative Versions of Probability Strategy 130

for discovering all the states is in Periodic Table. For this application, the difference

is caused only by the last state. We can see the results for the Periodic Table in more

detail in Figure A.2. The default version (and also the alternative version) is significantly

better than the simple version until the last state discovered. The reason is that in

Periodic Table there is a state that can only be reached through the initial state and the

initial state is not reachable from the other states unless a reset is used. The default

and alternative versions only use a reset towards the end of the crawl. However, simple

strategy uses a reset much earlier since it does not take the length of the transfer sequence

into account.

20 40 60 80 100 120 140 160 180 200 220 240 260

101

102

103

104

Number of States Discovered

C
os
t
(i
n
lo
g
S
ca
le
)

Default Alternative Simple Optimal

Figure A.2: State Discovery Costs for Periodic Table Using Different Ways to Choose a

State (in log scale)

We can note that the methods that take the length of the transfer sequence into

account when choosing a state, namely the default and alternative methods, discover

the majority of the states much earlier than the simple algorithm in all the applications.

Experimental Results for Alternative Versions of Probability Strategy 131

However, the simple method performs better towards the end. Between the default and

alternative versions, the default one is slightly better.

A.3 Alternative Probability Estimations and Aging

Next, we compare the probability estimation techniques that give more importance to

the recent explorations of an event (i.e., moving average techniques). These techniques

are used together with the aging technique. At the end of the section, we present the

results for alternative estimation of Pavg.

A.3.1 Moving Average Techniques and Aging

We have experimented with two different versions of moving average: Simple Moving

Average (SMA) and Exponentially Weighted Moving Average (EWMA). For SMA, there

is a parameter, w, specifying the window size for observations. That is, only the most

recent w explorations are taken into account to estimate the probability of an event. In

this study, we experimented with the following values for w: w = 10, w = 50, w = 100,

and w = ∞. For EWMA, there is the “smoothing parameter”, α, that specifies the

importance given to recent explorations. We experimented with the values α = 0.1,

α = 0.01, and α = 0.

We used these moving average techniques in combination with the aging technique.

The parameter for the aging technique is τ which specifies the threshold to boost an

event’s probability. That is, an event’s probability is boosted when its age becomes

larger than τ . We experimented with τ = 0.7, τ = 0.8, τ = 0.9, and τ = 1. The case

when w =∞ and τ = 1 and the case when α = 0 and τ = 1 mean that every exploration

of an event is taken into account when estimating its probability and the aging technique

is not applied. Hence, these combinations represent the default strategy.

We present the results for each application separately. For each application, two sets

of box plots are presented on the same page: the plots at the top of each page show

the results for the SMA technique and the plots at the bottom show the results for the

EWMA technique. The box plots are presented in linear scale except for Bebop and

Periodic Table. For these applications logarithmic scale is used for better representation.

Experimental Results for Alternative Versions of Probability Strategy 132

Bebop

Figure A.3 and Figure A.4 show the results for Bebop using SMA and EWMA, respec-

tively. Both plots are in logarithmic scale. For this application, both moving average

techniques perform similarly: taking as much explorations of an event as possible into

account (large w or small α) gives better results. The best results are obtained when

w = ∞ or α = 0. The aging technique does not show any significant change in the

results.

Elfinder

Figure A.5 and Figure A.6 show the results for Bebop using SMA and EWMA, respec-

tively. In the case of SMA, using a limited window reduces the cost to discover 75% of

the states. However, it does not perform so well for discovering the last quarter of the

states: w = ∞ finds all the states faster. EWMA technique performs better than the

SMA technique: EWMA is still better for discovering 75% of the states and it does not

get worse in the last quarter like SMA. Thus, EWMA improves the default strategy. The

aging technique does not have a significant effect on the results in both cases.

FileTree

Figure A.7 and Figure A.8 show the results for FileTree using SMA and EWMA, re-

spectively. In this application, using a moving average technique does not seem to have

an effect on the results. This may be explained by the fact that in this application, the

first exploration of an event discovers a state, but the subsequent explorations of the

event do not. Thus, the weight given to the recent explorations does not change the way

strategy chooses the next event since there is not much variation in an event’s possibility

of discovering a state during the crawl. On the other hand, aging improves the results

and the best results obtained when τ = 0.9. This is because, aging causes an event’s

first exploration to be earlier: since initially each event’s age is 1, an event that has not

been explored yet gets the highest probability.

Periodic Table

Figures A.9 and A.10 show the results for Periodic Table (in logarithmic scale) using

SMA and EWMA, respectively. The SMA technique does not have an observable effect

on the results. But, EWMA with α = 0.1 discovers the last state slightly earlier than the

Experimental Results for Alternative Versions of Probability Strategy 133

default version. The aging technique reduces the cost of discovering 50% of the states.

This is because, majority of the events (clicking on the elements in the table) lead to a

new state in the first exploration and aging causes the first exploration of an event to

happen earlier.

Clipmarks

Figure A.11 and Figure A.12 show the results for Clipmarks using SMA and EWMA,

respectively. There is no improvement when a moving average technique is used, instead

the results gets worse slightly. Using the aging technique seems to improve slightly the

cost of discovering 75% of the states.

TestRIA

Figure A.13 and Figure A.14 show the results for TestRIA using SMA and EWMA,

respectively. When SMA is used, the cases for w = 50 and w = 100 are identical to

w =∞ since there are at most 39 instances of an event in TestRIA. Using either moving

average technique does not improve the results. In both cases, the aging technique

slightly reduces the cost of discovering all the states, but 50% and 75% of the states are

discovered significantly faster without aging.

Altoro Mutual

Figure A.15 and Figure A.16 show the results for Altoro Mutual using SMA and EWMA,

respectively. When SMA is used, the cases for w = 50 and w = 100 are identical

to w = ∞ since there are at most 45 instances of an event in Altoro Mutual. Using

either moving average technique does not improve the results. In both cases, the aging

technique slightly improves the results where the best results obtained when τ = 0.9.

Hypercube10D

Figure A.17 and Figure A.18 show the results for Hypercube10D using SMA and EWMA,

respectively. Using the moving average techniques improve the results to discover 50%,

and 75% of the states. The best results are obtained with w = 10 in the case of SMA,

and with α = 0.1 in the case of EWMA. The aging technique has no significant effect on

this application.

Experimental Results for Alternative Versions of Probability Strategy 134

A.3.2 Using EWMA for Both Event Probabilities and Pavg

Now, we present the results for the case when the EWMA technique is used to estimate

Pavg, in addition to event probabilities. The same value for α is used to estimate Pavg and

the event probabilities. The values we have experimented with are α = 0.1, α = 0.01,

and α = 0. α = 0 is the case which corresponds to the default version of the strategy.

The box plots in Figure A.19 show the results for each application. For Elfinder,

FileTree, Periodic Table and Clipmarks, this technique with α = 0.01 is better than the

default version (α = 0). That is, the results for discovering the last quarter of the states

improve and the performance up to that point is the same level as the default version.

An exception is Bebop, where the default version discovers all the states faster, but the

version with α = 0.01 is better up to the point 75% of the states are discovered. For

TestRIA, Altoro Mutual, and Hypercube10D, there is not any significant change.

A.4 Default Strategy with Different Initial Proba-

bilities

For the default version of the strategy, the value of the initial probability is taken as 0.75.

We have chosen 0.75 as the default value since it is usually better than the other values.

Figure A.20 presents a comparison for the default strategy when the initial probability is

taken as 0.25 and 0.5, in addition to the default value 0.75. We can see that the default

value 0.75 is better than the other values for FileTree, Periodic Table, Altoro Mutual

and for TestRIA. For Clipmarks, taking the initial probability as 0.25 is slightly faster

up to the point where 75% of the states are discovered.

A.5 Conclusion

In this appendix, we provided some further experimental results for the Probability

strategy. Although some of these techniques improved the default version for some

applications, there is not a single version that gives the best performance in all the cases.

In most cases, considering every exploration of an event for probability estimation gives

fairly good results. Using the EWMA-based Pavg with α = 0.01 improves the performance

of the strategy for discovering the last quarter of the states in some cases. The aging does

not seem to have much impact, except for the applications where the majority of the

states can be discovered with the first execution of each event. The default value for the

Experimental Results for Alternative Versions of Probability Strategy 135

initial probability (0.75) gives better results than the other values we have experimented

with.

Experimental Results for Alternative Versions of Probability Strategy 136

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

100

101

102

103

104

105

106

Window Size for SMA

C
os
t
(i
n
lo
g
sc
al
e)

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.3: State Discovery Costs using SMA and Aging for Bebop (in log scale)

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

100

101

102

103

104

105

Smoothing Parameter for EWMA

C
os
t
(i
n
lo
g
sc
al
e)

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.4: State Discovery Costs using EWMA and Aging for Bebop (in log scale)

Experimental Results for Alternative Versions of Probability Strategy 137

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.5: State Discovery Costs using SMA and Aging for Elfinder

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

10,000

20,000

30,000

40,000

50,000

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.6: State Discovery Costs using EWMA and Aging for Elfinder

Experimental Results for Alternative Versions of Probability Strategy 138

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

200

400

600

800

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.7: State Discovery Costs using SMA and Aging for FileTree

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

200

400

600

800

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.8: State Discovery Costs using EWMA and Aging for FileTree

Experimental Results for Alternative Versions of Probability Strategy 139

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

100

101

102

103

104

Window Size for SMA

C
os
t
(i
n
lo
g
sc
al
e)

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.9: State Discovery Costs using SMA and Aging for Periodic Table (in log scale)

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

101

102

103

104

Smoothing Parameter for EWMA

C
os
t
(i
n
lo
g
sc
al
e)

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.10: State Discovery Costs using EWMA and Aging for Periodic Table (in log

scale)

Experimental Results for Alternative Versions of Probability Strategy 140

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

0

2,000

4,000

6,000

8,000

10,000

12,000

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.11: State Discovery Costs using SMA and Aging for Clipmarks

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

2,000

4,000

6,000

8,000

10,000

12,000

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.12: State Discovery Results using EWMA and Aging for Clipmarks

Experimental Results for Alternative Versions of Probability Strategy 141

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

20

40

60

80

100

120

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.13: State Discovery Costs using SMA and Aging for TestRIA

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

20

40

60

80

100

120

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.14: State Discovery Costs using EWMA and Aging for TestRIA

Experimental Results for Alternative Versions of Probability Strategy 142

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

50

100

150

200

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.15: State Discovery Costs using SMA and Aging for Altoro Mutual

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

50

100

150

200

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.16: State Discovery Costs using EWMA and Aging for Altoro Mutual

Experimental Results for Alternative Versions of Probability Strategy 143

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

w
=

10

w
=

50

w
=

10
0

w
=

∞

0

2,000

4,000

6,000

8,000

10,000

Window Size for SMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.17: State Discovery Costs using SMA and Aging for Hypercube10D

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

0

2,000

4,000

6,000

8,000

10,000

Smoothing Parameter for EWMA

C
os
t

τ = 0.7 τ = 0.8 τ = 0.9 τ = 1

Figure A.18: State Discovery Costs using EWMA and Aging for Hypercube10D

Experimental Results for Alternative Versions of Probability Strategy 144

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

α
=

0.
1

α
=

0.
01

α
=

0

100

101

102

103

104

105

Smoothing Parameter for EWMA

C
os
t
(i
n
lo
g
sc
al
e)

Bebop Elfinder FileTree
Periodic
Table Clipmarks TestRIA

Altoro
Mutual Hypercube10D

Figure A.19: State Discovery Costs when EWMA is used for both Pavg and Event Prob-

abilities (in log scale)

Experimental Results for Alternative Versions of Probability Strategy 145

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

0.
25

0.
50

0.
75

100

101

102

103

104

105

Initial Probability

C
os
t
(i
n
lo
g
sc
al
e)

Bebop Elfinder FileTree
Periodic
Table Clipmarks TestRIA

Altoro
Mutual Hypercube10D

Figure A.20: State Discovery Costs for the Default Strategy with Different Initial Prob-

abilities (in log scale)

Bibliography

[1] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line page impor-

tance computation. In Proceedings of the 12th international conference on World

Wide Web, WWW ’03, pages 280–290, New York, NY, USA, 2003. ACM.

[2] Amit Agarwal, Hema Swetha Koppula, Krishna P. Leela, Krishna Prasad Chitra-

pura, Sachin Garg, Pavan Kumar GM, Chittaranjan Haty, Anirban Roy, and Amit

Sasturkar. Url normalization for de-duplication of web pages. In Proceedings of the

18th ACM conference on Information and knowledge management, CIKM ’09, pages

1987–1990, New York, NY, USA, 2009. ACM.

[3] Martin Aigner. Lexicographic matching in boolean algebras. Journal of Combina-

torial Theory, 14(3):187–194, 1973.

[4] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Reverse engi-

neering finite state machines from rich internet applications. In Proceedings of the

2008 15th Working Conference on Reverse Engineering, WCRE ’08, pages 69–73,

Washington, DC, USA, 2008. IEEE Computer Society.

[5] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Experiment-

ing a reverse engineering technique for modelling the behaviour of rich internet

applications. In Software Maintenance, 2009. ICSM 2009. IEEE International Con-

ference on, pages 571 –574, sept. 2009.

[6] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Rich internet

application testing using execution trace data. In Proceedings of the 2010 Third

International Conference on Software Testing, Verification, and Validation Work-

shops, ICSTW ’10, pages 274–283, Washington, DC, USA, 2010. IEEE Computer

Society.

146

Bibliography 147

[7] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Techniques

and tools for rich internet applications testing. In Web Systems Evolution (WSE),

2010 12th IEEE International Symposium on, pages 63 –72, sept. 2010.

[8] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A gui

crawling-based technique for android mobile application testing. In Proceedings of

the 2011 IEEE Fourth International Conference on Software Testing, Verification

and Validation Workshops, ICSTW ’11, pages 252–261, Washington, DC, USA,

2011. IEEE Computer Society.

[9] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. Using gui ripping for automated testing of android

applications. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2012, pages 258–261, New York, NY, USA,

2012. ACM.

[10] Ian Anderson. Combinatorics of Finite Sets. Oxford Univ. Press, London, 1987.

[11] Apache. Apache flex. http://incubator.apache.org/flex/. [Online].

[12] K.A. Ayoub, H. Aly, and J.M Walsh. Dom based page uniqueness identification.

http://ip.com/patapp/CA2706743A1, 2010. [Online].

[13] Ricardo Baeza-yates and Carlos Castillo. Balancing volume, quality and freshness

in web crawling. In In Soft Computing Systems - Design, Management and Appli-

cations, pages 565–572. IOS Press, 2002.

[14] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. Do not crawl in the dust: Different

urls with similar text. ACM Trans. Web, 3(1):3:1–3:31, January 2009.

[15] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Auto-

mated black-box web application vulnerability testing. In Proceedings of the 2010

IEEE Symposium on Security and Privacy, SP ’10, pages 332–345, Washington, DC,

USA, 2010. IEEE Computer Society.

[16] Kamara Benjamin. A strategy for efficient crawling of rich internet applications.

Master’s thesis, EECS - University of Ottawa, 2010. http://ssrg.eecs.uottawa.

ca/docs/Benjamin-Thesis.pdf.

http://incubator.apache.org/flex/
http://ip.com/patapp/CA2706743A1
http://ssrg.eecs.uottawa.ca/docs/Benjamin-Thesis.pdf
http://ssrg.eecs.uottawa.ca/docs/Benjamin-Thesis.pdf

Bibliography 148

[17] Kamara Benjamin, Gregor v. Bochmann, Guy-Vincent Jourdan, and Iosif-Viorel

Onut. Some modeling challenges when testing rich internet applications for security.

In Proceedings of the 2010 Third International Conference on Software Testing,

Verification, and Validation Workshops, ICSTW ’10, pages 403–409, Washington,

DC, USA, 2010. IEEE Computer Society.

[18] Kamara Benjamin, Gregor Von Bochmann, Mustafa Emre Dincturk, Guy-Vincent

Jourdan, and Iosif Viorel Onut. A strategy for efficient crawling of rich internet

applications. In Proceedings of the 11th international conference on Web engineering,

ICWE’11, pages 74–89, Berlin, Heidelberg, 2011. Springer-Verlag.

[19] Cor-Paul Bezemer, Ali Mesbah, and Arie van Deursen. Automated security testing

of web widget interactions. In Proceedings of the the 7th joint meeting of the Eu-

ropean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, ESEC/FSE ’09, pages 81–90, New York, NY,

USA, 2009. ACM.

[20] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler:

a scalable fully distributed web crawler. Softw. Pract. Exper., 34(8):711–726, July

2004.

[21] N.G.D Bruijn, C. Tengbergen, and D. Kruyswijk. On the set of divisors of a number.

Nieuw Arch. Wisk., 23:191–194, 1951.

[22] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale, asymmetric

traveling salesman problems. ACM Trans. Math. Softw., 21(4):394–409, December

1995.

[23] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers. In Proceedings of the

11th international conference on World Wide Web, WWW ’02, pages 124–135, New

York, NY, USA, 2002. ACM.

[24] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web

crawlers. ACM Trans. Database Syst., 28(4):390–426, December 2003.

[25] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through

url ordering. In Proceedings of the seventh international conference on World Wide

Web 7, WWW7, pages 161–172, Amsterdam, The Netherlands, The Netherlands,

1998. Elsevier Science Publishers B. V.

Bibliography 149

[26] Suryakant Choudhary. M-crawler: Crawling rich internet applications using menu

meta-model. Master’s thesis, EECS - University of Ottawa, 2012. http://ssrg.

site.uottawa.ca/docs/Surya-Thesis.pdf.

[27] Suryakant Choudhary, Mustafa Emre Dincturk, Gregor V. Bochmann, Guy-Vincent

Jourdan, Iosif Viorel Onut, and Paul Ionescu. Solving some modeling challenges

when testing rich internet applications for security. Software Testing, Verification,

and Validation, 2012 International Conference on, 0:850–857, 2012.

[28] Edward G. Coffman, Zhen Liu, and Richard R. Weber. Optimal robot scheduling

for web search engines. Journal of Scheduling, 1(1):15–29, 1998.

[29] Anirban Dasgupta, Ravi Kumar, and Amit Sasturkar. De-duping urls via rewrite

rules. In Proceedings of the 14th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’08, pages 186–194, New York, NY, USA,

2008. ACM.

[30] Robert Palmer Dilworth. A decomposition theorem for partially ordered sets. Annals

of Mathematics, 51(1):161–166, 1950.

[31] Stefan Dobrev, Rastislav Krlovi, and Euripides Markou. Online graph exploration

with advice. In Guy Even and MagnsM. Halldrsson, editors, Structural Information

and Communication Complexity, volume 7355 of Lecture Notes in Computer Science,

pages 267–278. Springer Berlin Heidelberg, 2012.

[32] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest: an anal-

ysis of black-box web vulnerability scanners. In Proceedings of the 7th international

conference on Detection of intrusions and malware, and vulnerability assessment,

DIMVA’10, pages 111–131, Berlin, Heidelberg, 2010. Springer-Verlag.

[33] Cristian Duda, Gianni Frey, Donald Kossmann, Reto Matter, and Chong Zhou.

Ajax crawl: Making ajax applications searchable. In Proceedings of the 2009 IEEE

International Conference on Data Engineering, ICDE ’09, pages 78–89, Washington,

DC, USA, 2009. IEEE Computer Society.

[34] H. A. Eiselt, Michel Gendreau, and Gilbert Laporte. Arc routing problems, part ii:

The rural postman problem. Operations Research, 43(3):pp. 399–414, 1995.

http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf
http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf

Bibliography 150

[35] M. Erfani and A. Mesbah. Reverse engineering ios mobile applications. In 19th

Working Conference on Reverse Engineering, (WCRE’12), 2012.

[36] José Exposto, Joaquim Macedo, António Pina, Albano Alves, and José Rufino.

Information networking. towards ubiquitous networking and services. chapter Effi-

cient Partitioning Strategies for Distributed Web Crawling, pages 544–553. Springer-

Verlag, 2008.

[37] Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard Trip-

pen. Competitive online approximation of the optimal search ratio. In In Proc. 12th

Annu. European Sympos. Algorithms, volume 3221 of Lecture Notes Comput. Sci,

pages 335–346. Springer-Verlag, 2004.

[38] Gianni Frey. Indexing ajax web applications. Master’s thesis, ETH Zurich, 2007.

http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf.

[39] Klaus-Tycho Frster and Roger Wattenhofer. Directed graph exploration. In

Roberto Baldoni, Paola Flocchini, and Ravindran Binoy, editors, Principles of Dis-

tributed Systems, volume 7702 of Lecture Notes in Computer Science, pages 151–165.

Springer Berlin Heidelberg, 2012.

[40] Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php, 2005. [Online].

[41] Google. Making ajax applications crawlable. http://code.google.com/web/

ajaxcrawling/index.html, 2009. [Online].

[42] Curtis Greene and Daniel J. Kleitman. Strong versions of sperner’s theorem. Journal

of Combinatorial Theory, Ser. A, 20(1):80–88, 1976.

[43] Jerrold Griggs, Charles E. Killian, and Carla Savage. Venn diagrams and symmetric

chain decompositions in the boolean lattice. Electron. J. Combin., 11:Research

Paper, 2:21, 2004.

[44] IBM. IBM Security AppScan family. http://www-01.ibm.com/software/

awdtools/appscan/. [Online].

[45] M. Koster. A standard for robot exclusion. http://www.robotstxt.org/orig.

html, 1994. [Online].

http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://code.google.com/web/ajaxcrawling/index.html
http://code.google.com/web/ajaxcrawling/index.html
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html

Bibliography 151

[46] J Prasanna Kumar and P Govindarajulu. Duplicate and near duplicate documents

detection: A review. European Journal of Scientific Research, 32:514–527, 2009.

[47] Boon Thau Loo, Loo Owen, and Cooper Sailesh Krishnamurthy. Distributed web

crawling over dhts. Technical report, UC Berkeley, 2004.

[48] Jianguo Lu, Yan Wang, Jie Liang, J. Chen, and Jiming Liu. An approach to deep

web crawling by sampling. In Web Intelligence and Intelligent Agent Technology,

2008. WI-IAT ’08. IEEE/WIC/ACM International Conference on, volume 1, pages

718 –724, 2008.

[49] Alessandro Marchetto and Paolo Tonella. Search-based testing of ajax web appli-

cations. In Proceedings of the 2009 1st International Symposium on Search Based

Software Engineering, SSBSE ’09, pages 3–12, Washington, DC, USA, 2009. IEEE

Computer Society.

[50] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based testing of ajax

web applications. In Proceedings of the 2008 International Conference on Software

Testing, Verification, and Validation, ICST ’08, pages 121–130, Washington, DC,

USA, 2008. IEEE Computer Society.

[51] Reto Matter. Ajax crawl: Making ajax applications searchable. Master’s thesis,

ETH Zurich, 2008. http://e-collection.library.ethz.ch/eserv/eth:30709/

eth-30709-01.pdf.

[52] Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph exploration:

new results on old and new algorithms. In Proceedings of the 38th international

conference on Automata, languages and programming - Volume Part II, ICALP’11,

pages 478–489, Berlin, Heidelberg, 2011. Springer-Verlag.

[53] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling ajax by inferring user

interface state changes. In Proceedings of the 2008 Eighth International Conference

on Web Engineering, ICWE ’08, pages 122–134, Washington, DC, USA, 2008. IEEE

Computer Society.

[54] Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of ajax user

interfaces. In Software Engineering, 2009. ICSE 2009. IEEE 31st International

Conference on, pages 210 –220, may 2009.

http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf

Bibliography 152

[55] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web ap-

plications through dynamic analysis of user interface state changes. TWEB, 6(1):3,

2012.

[56] Microsoft. Silverlight. http://www.microsoft.com/silverlight/. [Online].

[57] Marc Najork and Janet L. Wiener. Breadth-first crawling yields high-quality pages.

In Proceedings of the 10th international conference on World Wide Web, WWW

’01, pages 114–118, New York, NY, USA, 2001. ACM.

[58] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading textual hidden

web content through keyword queries. In Proceedings of the 5th ACM/IEEE-CS

joint conference on Digital libraries, JCDL ’05, pages 100–109, New York, NY,

USA, 2005. ACM.

[59] Christopher Olston and Marc Najork. Web crawling. Found. Trends Inf. Retr.,

4(3):175–246, March 2010.

[60] I.V. Onut, K.A. Ayoub, P. Ionescu, G.v. Bochmann, G.V. Jourdan, M.E Dinc-

turk, and S.M. Mirtaheri. Representation of an element in a page via an identifier.

[Patent].

[61] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web, 1998. Standford University, Technical

Report.

[62] Zhaomeng Peng, Nengqiang He, Chunxiao Jiang, Zhihua Li, Lei Xu, Yipeng Li, and

Yong Ren. Graph-based ajax crawl: Mining data from rich internet applications.

In Computer Science and Electronics Engineering (ICCSEE), 2012 International

Conference on, volume 3, pages 590 –594, march 2012.

[63] K.F. Riley, M.P. Hobson, and S.J. Bence. Mathematical methods for physics and

engineering. Cambridge University Press, 3rd edition, 2006.

[64] Danny Roest, Ali Mesbah, and Arie van Deursen. Regression testing ajax applica-

tions: Coping with dynamism. In ICST, pages 127–136. IEEE Computer Society,

2010.

[65] Harold Thimbleby. The directed chinese postman problem. Software — Practice &

Experience, 33(11):1081–1096, 2003.

http://www.microsoft.com/silverlight/

Bibliography 153

[66] World Wide Web Consortium (W3C). Document object model (dom). http://

www.w3.org/DOM/, 2005. [Online].

[67] Ping Wu, Ji-Rong Wen, Huan Liu, and Wei-Ying Ma. Query selection techniques for

efficient crawling of structured web sources. In Proceedings of the 22nd International

Conference on Data Engineering, ICDE ’06, pages 47–, Washington, DC, USA, 2006.

IEEE Computer Society.

[68] Sandy L. Zabell. The rule of succession. Erkenntnis, 31:283–321, 1989.

http://www.w3.org/DOM/
http://www.w3.org/DOM/

	Introduction
	Traditional Web Applications
	Rich Internet Applications
	JavaScript and Document Object Model
	AJAX

	Crawling Web Applications
	Motivations for Crawling
	Model of an Application
	Requirements
	Crawling Traditional Web Applications
	Crawling Rich Internet Applications
	Crawling Strategy

	Motivation and Research Question
	Overview and Organization of the Thesis
	Contributions
	Organization

	Working Assumptions and Challenges
	Introduction
	Working Assumptions
	DOM Equivalence
	Event Identification
	Intermediate States
	Conclusion

	Literature Review
	Introduction
	Traditional Crawling
	Crawling Strategies (URL Ordering)
	Page Freshness
	Politeness
	Distributed Crawling
	Eliminating Redundant and Non-Relevant Content

	RIA Crawling
	Crawling Strategy
	DOM Equivalence and Comparison
	Parallel Crawling
	Automated Testing
	Ranking (Importance Metric)
	Related Graph Problem

	Conclusion

	Model-based Crawling
	Introduction
	Model-based Crawling
	Meta-Model
	The Methodology

	Hypercube Meta-Model and the Initial Strategy
	Hypercube Meta-Model
	Violations of the Hypercube Assumptions
	The Initial Strategy

	The New Hypercube Strategy
	State Exploration Strategy
	Transition Exploration Phase
	Executing Events, Updating the Models and Handling Violations
	Complexity Analysis
	Proof of Optimality

	Conclusion

	The Probability Strategy
	Introduction
	Overview of the Menu Strategy
	Overview of the Probability Strategy
	Estimating an Event's Probability
	Rule of Succession
	Probability of an Event

	Choosing the Next Event to Explore
	Algorithm
	Complexity Analysis

	Alternative Versions of the Strategy
	Conclusion

	Crawler Implementation
	Introduction
	Crawler Architecture
	DOM Events and Event Identification
	Event Registration Methods
	Implementation

	DOM Equivalence
	Computing the HTML ID

	Conclusion

	Experimental Results
	Introduction
	Measuring Efficiency
	Cost Calculation

	Strategies Used for Comparison and the Optimal Cost
	Subject Applications
	Real Applications
	Test Applications

	Experimental Setup
	State Discovery Results
	Bebop
	ElFinder
	FileTree
	Periodic Table
	Clipmarks
	TestRIA
	Altoro Mutual
	Hypercube10D
	Summary

	Total Cost of Crawling
	Time Measurements
	State Discovery and Complete Crawl Times
	Distributions of the Complete Crawl Times

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Adaptive Model-based Crawling
	State-Space Explosion
	Greater Diversity
	Relaxing the Determinism Assumption
	Distributed Crawling
	Mobile Applications

	Experimental Results for Alternative Versions of Probability Strategy
	Introduction
	Algorithms to Choose a State
	Alternative Probability Estimations and Aging
	Moving Average Techniques and Aging
	Using EWMA for Both Event Probabilities and Pavg

	Default Strategy with Different Initial Probabilities
	Conclusion

