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Abstract. Crawling “classical” web applications is a problem that has
been addressed more than a decode ago. Efficient crawling of web ap-
plications that use advanced technologies such as AJAX (called Rich
Internet Applications, RIAs) is still an open problem. Crawling is im-
portant not only for indexing content, but also for building models of
the applications, which is necessary for automated testing, automated
security and accessibility assessments and in general for using software
engineering tools. This paper presents a new strategy to crawl RIAs. It
uses the concept of Model-Based Crawling (MBC) first introduced in [1],
and introduces a new model, the “menu model”, which we show to be
much simpler than previous models for MBC and more effective at build-
ing models than previously published methods. This method and others
are compared against a set of experimental and real RIAs.
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1 Introduction

The ability to automatically extract a model of a website is important for several
reasons. The most obvious one is to index the content of the sites, which is
done through “crawling”. Indexing is obviously a central feature of the Web,
but not the only reason why inferring models is important. We also require
models for tasks related to good software engineering: models are needed as input
for automated testing of applications (“model-based testing”), models are also
needed for automated security assessments, for automated usability assessments,
or simply as a way to better understand the structure of the website.

Nearly two and a half decades of research in the area of model extraction and
crawling has produced a large body of work with many powerful solutions [2].
The majority of the studies, however, focus on traditional web applications,
where the HTML view of the page is generated on the server side. In this model,
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there is a one-to-one relation between the URL of the page and the state of its
Document Object Model (DOM) [3]. Thus, many of the proposed web crawlers
use the URL to identify the state of the DOM. Such assumption reduces the
basic task of crawling the Web to the task of finding all the valid and reachable
URLs from a set of seed URLs.

However, the so-called Rich Internet Applications (RIAs) break the one-to-
one relationship between the URL and the state of the DOM. In RIAs, DOMs
are partially updated by client-side script execution (such as JavaScript R©), and
asynchronous calls to the server are done through technologies such as AJAX [4].
Such sophisticated client-side applications create a one-to-many relation between
the URL and the reachable DOM states associated with that URL.

This evolution is positive, but comes at a cost which has been underestimated:
the crawling techniques developed for traditional web applications just do not
work on RIAs. We have lost our ability to crawl and model web applications
as they are typically created today5. Even simple websites are not immune to
the problem since common tools to create and maintain website content are
increasingly adding AJAX-like scripts to the page. We need to address this
issue, which means to develop web crawlers that do not rely solely on the URL to
uniquely identify the state of the application, but also take into consideration the
DOM structure and its properties to identify different states of the application.
There is some work being done in that domain (see [5] for an overview), but
more must be done. This paper is one step in this direction.

Crawling RIAs is much more complex than crawling traditional web appli-
cations. The one-to-many relation between a URL and states of the DOM can
be modeled as a directed graph referred to as the application graph. In the ap-
plication graph, each state of the DOM is a node, and each JavaScript event
is a directed edge. To construct such a graph, one must differentiate between
different states of the DOM, which is a challenge in itself, but outside the scope
of this paper (see e.g. [6] for a discussion on the topic). In this model, taking an
edge from a node means executing a JavaScript event from the DOM that the
node represents.

After defining the application graph, the task of crawling a RIA is reduced
to the task of discovering every state in the application graph. The state that is
reached when a given URL is loaded is called the “initial state of the URL”. For
a crawler to ensure that all states reachable from a given URL are discovered,
the crawler has to start from the initial state of the URL, take every possible
transition, and do this for every newly discovered state recursively. This often
takes a long time. It is thus interesting for a crawler to discover as many states
as possible during early stages of the crawl, and postpone executing events that
most probably lead to visited states.

To this end, we have introduced a general approach called model-based crawl-
ing [1], where a crawling strategy aims at discovering the states of the application

5See e.g. https://developers.google.com/webmasters/ajax-crawling/docs/

getting-started, in which Google suggests to create static URLs to index the pages
that will not be reached by the crawler because of AJAX.

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
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as soon as possible by making predictions based on an anticipated model for the
application. In this paper, we propose a new strategy, called the Menu strategy,
using the model-based crawling approach. This new algorithm is simpler and
more efficient to discover all reachable DOM states in a RIA than the other
known strategies.

The rest of this paper is organized as follows: in Section 2, we give an overview
of model-based crawling. In Section 3, we explain the proposed strategy in de-
tails. Section 4 presents the experimental study. In Section 5, a summary of
related works is presented. In Section 6, we conclude the paper.

2 Overview

Building a model of a RIA is potentially a very lengthy process, because of the
large number of states and transitions involved. Because of this, many of the
existing strategies do not try to build a complete model of the application being
crawled. Our approach is different: we insist that under some assumptions, given
enough time the strategy should produce a complete model of the RIA. On the
other hand, we acknowledge that, most of the time, we will not have enough
time to complete the crawl. Thus, our first goal is to produce a complete model
as efficiently as possible, which means that we want to minimize the number of
events we need to execute to produce such a model. Our second goal is that, as
we produce this model, we should discover as many states as possible, as early
as possible during the crawl. Because, in most cases, it is more important to find
the states than it is to find the transitions. If we are not going to run the crawl
to the end, we want to ensure that the partial model being built will contain as
much states as possible.

When we crawl a website, we make the following assumptions: we assume
that, if user inputs are involved, we have access to a collection of sample inputs
that are good enough to build the model. We do not address here the question
of how to generate such inputs. The second assumption is that the RIA being
crawled is deterministic from the point of view of the crawler. This means that,
from the same state, the same action will always produce the same result (go
to the same state). Although this assumption is fairly commonly made in the
literature, we recognize that it is a very limiting assumption and that more
work will have to be done to relax it in the future. Finally, we assume that
we can always “reset” the RIA by reloading the URL, and thus the underlying
application graph is strongly connected.

In general, it is not possible to devise a strategy that would be efficient at
finding the states early, since the underlying graph could be any graph. We
have introduced model-based crawling as a solution to this problem [1]. With
model-based crawling, we initially assume that application will follow a particu-
lar behavioral model referred to as meta-model. It is anticipated that the model
of the application will be an instance of this meta-model. An efficient (ideally, op-
timal) strategy is designed based on this anticipation. However, it is not strictly
assumed that the RIA being crawled will actually follow the meta-model. During
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the crawl, each time we see a difference between the anticipated behavior and
the actual behavior, we adapt the strategy accordingly.

A model-based strategy usually consists of two phases:

1. State exploration phase where the objective is to discover all the appli-
cation states as predicted by the meta-model of the strategy.

2. Transition exploration phase where the objective is to execute all re-
maining events, to complete the model.

It is possible that, during the second phase, new states are discovered, in
which case we will switch back to the first phase. Thus, a model-based crawling
strategy may alternate between these two phases multiple times before finishing
the crawl. The strategy finishes the crawl when it has executed all the events
in the application, which guarantees to have discovered all the states of the
application.

The first model-based crawling strategy is the “Hypercube” strategy where
the application is anticipated to have a hypercube structure [1]. The Hypercube
strategy is an optimal strategy for the RIAs that fully follow the hypercube meta-
model. However, in practice, few RIAs follow this model, and the algorithms
involved are rather complex. Even though the results were better than other
strategies even for RIAs that do not follow this model, we present here a new
strategy that is better still, much easier to understand and is based on a meta-
model more commonly found in RIAs.

3 Menu Model

The proposed crawling strategy is based on the idea that some events will always
lead the application to the same resulting state, regardless of the source state
from which the event is executed. These kind of events are referred to as the
“menu events”.

We called this new model menu model because our menu events are often
the intended model behind application menus. Such behavior is realized by the
menu items present in a web application such as home, help, about us etc.

Once an event is identified as a menu event, we can use it to anticipate some
part of the application graph, and use this anticipated graph to build an efficient
strategy. Thus, the core of the strategy is to identify these menu events, and then
execute the events that are not menu events sooner than the menu events (since
menu events are anticipated to produce known states). In practice, we prioritize
the events based on the execution history:

1. Globally unexecuted events: This category represents the events that
have not yet been executed at any state discovered so far. Events in this
category have the highest priority.

2. Locally unexecuted events: This category represents the events that have
been executed at some discovered state but have not been executed at the
current state of the application. Events in this category are further divided
into the following subcategories:
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(a) Non-classified events: Events in this subcategory has been executed
only once globally. A second execution is necessary to classify the event.
Events in this subcategory have the second highest priority next to the
globally unexecuted events.

(b) Menu events: Events in this subcategory follow the menu model hy-
pothesis when the first two executions are considered: their executions
from two different states have led to the same state. They have the lowest
priority.

(c) Self-Loop events: Events in this subcategory have not changed the
state of the application in their first two executions. They have the same
priority as the menu events.

(d) Other events: All the remaining events belong to this category. These
are the events that have shown neither menu nor self-loop behavior in
their first two executions. These events have the same priority as non-
classified events.

Since the events in the menu and self-loop categories are not expected to lead
to a new state, they have the lowest priority.

The categorization of the events is done throughout the crawl. The priority
sets are updated as new events are found in newly discovered states and as
more information about results of the execution instances of the events become
available.

3.1 State Exploration Phase

The primary goal of the state exploration phase is to discover all the states of the
application as soon as possible. To do so, the strategy constructs and maintains
a graph model of the application. The application graph is a weighted directed
graph, G = (V,E) where V represents the states discovered and E represents
the edges. An edge may be an executed event, a reset, or a predicted transition.
A reset is the action of resetting the application to its initial state by reloading
the URL. For simplicity, we assume each event to have the same unit cost, but
the cost of reset is different and it depends on the application being crawled. A
predicted edge corresponds to a non-classified event or a menu event that is not
executed in the source state (for the purpose of predicting transitions, all non-
classified events are assumed to be menu events). In the case of a non-classified
event, the predicted resulting state is the state which was reached on the first
execution of the event, and in the case of a menu event it is the resulting state
of the menu event. A self-loop predicted edge correspond to an unexecuted self-
loop event. In this case, the predicted resulting state is the starting state of the
self-loop edge. Figure 1 shows an instance of G.

The state exploration phase starts by categorizing the events (initially, the
crawler only knows the events on the initial state; but, as the crawl progresses,
previously unseen events can be found on newly discovered states). Each event
initially belongs to the globally unexecuted category. Unexecuted events are then
picked according to the priority sets. All the instances of the events from a higher
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Fig. 1. An example of application graph G under construction: solid lines are executed
transitions, dashed lines are resets, dotted lines are predicted transitions.

priority set are exhausted before executing an event from a lower priority set.
Among the events with the same priority, the priority is given to any event
which is closer to the current state than the others (closeness is in terms of
number of transitions that needs to be taken to reach a state where the event
is enabled and unexecuted), otherwise one is chosen at random. During the
state exploration phase, we execute all the unexecuted events in the application,
except for categorized menu and self-loop events.

Once an event is picked for execution, the strategy always uses the shortest
known path from the current state scurr to the state snext where the event is going
to be executed. This calculated shortest path may contain predicted transitions.
A predicted transition may of course be wrong, and the application may end up
in a state that is not the predicted one. During the execution of the path, the
strategy verifies, after each predicted transition, that the state reached is the
one predicted. When this is not the case, the crawled RIA contradicts the menu
model (at least from that state, and for this event). To adapt to such a violation,
the strategy discards the current path and looks for the next unexecuted event
from the state reached.

scurr sint1 sint2 snext
e1 e2 e3 ex

Fig. 2. Path from the current state to state snext where the next event can be executed.
Solid lines represent known transitions, and dotted lines represent predicted transitions.

For instance, considering the execution of the example path shown in Fig-
ure 2, let us assume that there is a violation when the predicted transition e2
(originating from sint1) is taken. As Figure 3 shows, after executing event e2 on
sint1, we reach state s′ instead of sint2. Due to this violation, the menu strategy



Building Rich Internet Applications Models: Example of a Better Strategy 7

ignores the rest of the path segments, and builds a new path from the current
state (s′) to a next state with an unexecuted event.

During the execution of a path, each predicted transition leads to the ex-
ecution of an event that had not been executed from that state before, which
permits the categorization of that event if it is not already categorized.

scurr sint1 sint2 snext

s′nexts′

(V
io
la
tio

n
)

e1

e
2

e3 ex

Path of events

e′
x

Fig. 3. Example of a violation for the path in Figure 2

3.2 Transition Exploration Phase

The state exploration phase executes all the events discovered during that phase,
except for the events in the menu and the self-loop categories. Once the state
exploration phase is over, the menu strategy moves to the transition exploration
phase. The transition exploration phase verifies the validity of the assumptions
made at the state exploration phase by executing all these remaining events. In
an application that follows the menu model, all the states of the application are
found by the end of the state exploration phase. Any violating menu or self-loop
events, however, may lead to the discovery of a new state.

During the transition exploration phase, the strategy tries to find the least
costly path to execute all the remaining events in the application. The cost of
this path is measured in terms of the total number of events and resets required.

If we define a walk of the graph as a sequence of adjacent edges, the tran-
sition exploration problem can be mapped to the problem of finding the least
costly walk of the graph that traverses all the edges representing the unexe-
cuted events at least once. During the transition exploration phase, should the
execution of any unexecuted event lead to the discovery of a new state, the
strategy switches back to the state exploration phase. This mechanism expe-
dites finding new states. Thus, the menu strategy might alternate between the
state and transition exploration phases many times before it finishes the crawl
of the application.

Graph Walk The transition exploration phase uses a walk generator function
to calculate a walk that covers all of the unexecuted events. During the calcu-
lation of the graph walk, the application graph includes predicted transitions.
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Hence, executing the event sequence in the walk might not result in the expected
state. In fact, a single violation can make the event sequence invalid. To avoid
this, a step-wise approach in construction of the whole walk is taken. The walk
generator function splits the event sequence into multiple walk segments. Each
walk segment may start with a reset, may be followed by zero or more already
executed events, and ends with an unexecuted event.

Considering the example in Figure 1 where the results of all the unexecuted
events have been assumed, a possible walk that covers every unexecuted event
is the sequence < e1, e3, e0, e1, e2 >, which starts at the initial state, s0, and
terminates at s3.

Our immediate situation is similar to the problem known as the Rural Chi-
nese Postman Problem (RCPP) [7], where given a graph we want a least cost
tour covering only a subset of the edges. The application graph contains known
transitions corresponding to executed events and predicted transitions corre-
sponding to unexecuted menu and self-loop events. We need a least cost tour to
execute all the remaining unexecuted events.

Unfortunately, the RCPP is an NP-complete problem, so we do not attempt
to solve this problem. Instead, we use the Chinese Postman Problem (CPP).
In CPP, given a graph we want a least cost tour of all the edges. Unlike the
RCPP, there are polynomial algorithms for the CPP. However, this is not a
perfect analogy to our situation: in the current graph, we have both executed
and predicted transitions, and we only want to execute the predicted ones. If we
consider the subgraph containing only the predicted transitions, this subgraph
may not be connected, and a tour may not exist. To address this problem, we
augment this subgraph with a few of the known transitions (including resets if
necessary), until the graph is strongly connected again. We then use CPP to
create a tour that goes over every transitions. This solution gives reasonably
good results (although clearly non optimal) at a small computational cost.

Violation and Strategy Adaptation When going over the tour, each pre-
dicted transition may lead to a violation of the assumption, and the application
can end up in a state that is not the one predicted. There are two cases to handle:

1. Wrong known state: This is the case where the resulting state has been
discovered previously, but it is not the expected state. When this happens,
the predicted edge is removed from the graph, replaced with the newly ex-
ecuted transition. At this point, we end up in the wrong state in the tour.
Instead of recomputing a tour, we have opted for a simpler solution: the
strategy keeps the original walk, and brings the application back to the
state that was expected to be reached initially. To do this, we simply find
the shortest known path that does not contain any predicted edges from the
current state to that next state, and execute it first.

2. New state: Should a violation lead to the discovery of a new state, the
crawling strategy switches back immediately to the state exploration phase.
However, we do not discard the calculated CPP walk, which is reused later
when the strategy reaches the transition exploration phase again. At this
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point, the existing CPP is augmented to include any additional discovered
unexecuted events.

Due to space constraints, we do not include more details which can be found
in [8].

4 Implementation and Evaluation

In this section, we present our experimental results, comparing the efficiency of
the Menu strategy against many other existing crawling strategies on several
AJAX-based RIAs.

4.1 Measuring the Efficiency of a Strategy

As explained before, our definition of an efficient strategy is a strategy that builds
the entire model quickly, while finding all the states as early as possible in the
process. In order to measure speed, instead of measuring time, we measure the
number of event executions and the number of resets required by each strategy
to complete both tasks (find all the states, find the complete model). This is
reasonable since the time spent for event executions and resets dominates the
crawling time and the numbers depend only on the decisions of the strategy.
And this way, the results do not depend on the hardware that is used to run
the experiments and are not affected by the network delays which can vary in
different runs.

We combine these numbers to define a cost unit as follows. We measure for
each application the following two values. t(e)avg: the average event execution
time obtained by measuring the time for executing each event in a randomly
selected set of events in the application and taking the average, and t(r)avg: the
average time to perform a reset. For simplicity, we consider each event execution
to take t(e)avg and take this as a cost unit. Then, we calculate “the cost of reset”:
cr = t(r)avg/t(e)avg. Finally, the cost that is spent by a strategy to find all the
states of an application is calculated by ne + nr × cr where ne and nr are the
total number of events executed and resets used by the strategy to find all the
states, respectively6.

4.2 Crawling Strategies Used for Comparison

– Optimized Standard Crawling Strategies: The standard crawling strategies
are Breadth-First and Depth-First. We use “optimized” versions of these
strategies, meaning that when there is a need to move from the current state
to another known state, the shortest known path from the current state to

6We measure the value of cr before crawling an application and give this value as a
parameter to each strategy. A strategy, knowing how costly a reset is compared to an
average event execution, can decide whether to reset or not when moving from current
state to another known state.
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the desired state is used. This is in contrast to using systematic resets. The
results presented here with the optimized versions are much better than the
ones obtained using the standard, non-optimized Breadth-First and Depth-
First strategies.

– Greedy Strategy [9]: This is a simple strategy that prefers to explore an event
from the current state, if there is one. Otherwise, it chooses an event from a
state that is closest to the current state.

– Other Model-based Crawling Strategies: We also compare with other ex-
isting model-based strategies: The Hypercube strategy [1] is based on the
anticipation that the application has a hypercube model. The Probability
Strategy [10] prioritizes the events by estimating their probabilities of dis-
covering a new state based on their previous explorations.

– The Optimal Cost: We also present the optimal cost of discovering all the
states for each application. This cost is calculated once the model is known
(after the application is crawled first with one of the strategies). Finding an
optimal path that visits every state in a known model is possible by solving
an Asymmetric Traveling Salesman Problem (ATSP). We use an exact ATSP
solver [11] to find this path. This gives us an idea of how far from the optimal
speed each strategy is (for the first phase, find all the states). Of course, this
optimal is not a strategy on its own, and can only be calculated once the
entire model is known.

4.3 Subject Applications

We are comparing the strategies using two test RIAs and four real RIAs7. This
number is not as large as we would like, but we are limited by the tools that are
available to us. Each new RIA requires a significant amount of work before we
can crawl it8. With the increasing exposure to this problem, better tools will be
made available, and we will be able to test our solutions on a much broader test
set.

– Bebop: This is an AJAX-based interface to browse a list of publications. We
have used an instance that contains 5 publications. It has 1,800 states and
145,811 transitions. The measured cost of reset is 2.

7http://ssrg.eecs.uottawa.ca/testbeds.html
8We stress that the work in question is not related to the strategy described here,

but to the limitation of the available tools. One approach to implement a RIA crawler is
to control an external browser using an API such as Selenium WebDriver (as Crawljax
[12] does). The main drawback of this approach is the inability to detect automatically
all the events in a page since the DOM interface does not have a method to check if
an element has an event registered dynamically (using addEventListener method in
JavaScript). So, the user needs to specify the elements that should be interacted with
in an application. Our approach is to implement a browser as part of the crawler. Thus,
our crawler has more control over the application and can detect automatically all the
events in a page. However, this requires more work since we need to make sure that
our browser supports all the functionality required by the RIA.

http://ssrg.eecs.uottawa.ca/testbeds.html
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– jQuery FileTree: This is an AJAX-based file explorer. For this study, we
used an instance that allows browsing Python source code. It has 214 states,
8,428 transitions. The measured cost of reset is 2.

– Periodic Table: This is an AJAX-based periodic table. It has 240 states,
29,034 transitions. The measured cost of reset is 8.

– Clipmarks: This was a AJAX-based social network. We have used a partial
local copy of this website for the experimental study. It has 129 states, 10,580
transitions. The measured cost of reset is 18.

– Altoro Mutual: This is an AJAX version of a demo website in the form of a
fictional banking site. It has 45 states, 1,210 transitions. The measured cost
of reset is 2.

– TestRIA: This is a AJAX test application in the form of a generic homepage.
It has 39 states, 305 transitions. The measured cost of reset is 2.

4.4 Experimental Setup

We have implemented all the mentioned crawling strategies in a prototype of
IBM R© Security AppScan R© Enterprise9. Each strategy is implemented as a sep-
arate class in the same code base, so they use the same DOM equivalence mecha-
nism, the same event identification mechanism, and the same embedded browser.
For this reason, each strategy extracts the same model for an application.

We crawl each application with each strategy ten times and present the
average of these crawls. In each crawl, the events of each state are randomly
shuffled before they are passed to the strategy. The aim here is to eliminate
influence caused by exploring the events of a state in a certain order since the
strategy may not define an exploration priority for the events on a state.

4.5 Costs of Discovering States (Strategy Efficiency)

The box plots in Figure 4 show the results. For each application and for each
strategy, the figure contains a box plot. A box plot consists of a line and a box
on the line. The minimum point of the line shows the cost of discovering the first
state (always equal to the cost of reset for the application). The lower edge, the
line in the middle and the higher edge of the box show the cost of discovering
25%, 50% and 75% of the states, respectively. The maximum point of the line
shows the cost of discovering all the states. The plots are drawn in logarithmic
scale for better visualization. Each horizontal dotted line shows the optimal cost
for the corresponding application.

The results show that for all applications the Greedy strategy and the model-
based strategies are significantly more efficient than Breadth-First and Depth-
First. It can also be seen that the Menu strategy has the best performance to
discover all the states except for the Bebop where it is very close to the best. In

9Details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf

Since our crawler is built on top of the architecture of a commercial product, we are
not able to provide open-source implementations of the strategies currently.

http://ssrg.eecs.uottawa.ca/docs/prototype.pdf
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Fig. 4. Costs of Discovering the States (Strategy Efficiency), in logarithmic scale. Each
horizontal dotted line shows the optimal cost for the corresponding application.

4 out of 6 cases, it was the first to discover the 75% of the states. In addition, the
Menu strategy was the first to discover the 50% and the 25% of the states in all
cases, except for Clipmarks where it is very close to the best. This is particularly
important if one assumes that the crawl will not be run to the end and that in
most cases it will be cut short. It shows that the Menu is the strategy that will
provide the most information after the least amount of time.

4.6 Costs of Complete Crawl

The previous results show the costs of discovering all the states. However, the
crawl does not end at this point since a crawler cannot know all states are
discovered until all the events are explored from each state (in other words, we
could provide this information only because we have run the tests to the end).
In Table 1, the total number of events and the total number of resets during the
crawl are shown as well as the costs calculated based on these numbers.

It can be seen that the model-based strategies and the Greedy strategy finish
crawling with a significantly less cost compared with Breadth-First and Depth-
First. The Menu is in the same ballpark as the other model-based strategies, but
not better. However, the complete crawl is not as important a factor as finding
all the states, as explained before.

5 Related Works

A survey of traditional crawling techniques is presented in [2]. For RIA crawling,
a recent survey is presented in [5]. Except for [1,10,13] which present other model-
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Bebop FileTree Periodic Table Clipmarks Altoro Mutual TestRIA
Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 13, 386, 210 27 13, 386, 264 99, 336 13 99, 362 897, 358 236 899, 246 19, 569 72 20, 868 6, 876 34 6, 944 1, 433 1 1, 435
Breadth-First 943, 001 8, 732 960, 466 26, 375 1, 639 29, 652 64, 850 14, 633 181, 916 15, 342 926 32, 015 3, 074 334 3, 742 1, 216 55 1, 326
Greedy 826, 914 27 826, 968 20, 721 13 20, 747 29, 926 236 31, 814 11, 396 56 12, 398 2, 508 34 2, 576 1, 001 1 1, 003
Hypercube 816, 142 27 816, 196 19, 865 13 19, 891 29, 921 236 31, 809 11, 350 56 12, 356 2, 489 34 2, 557 994 1 996
Probability 816, 922 27 816, 976 19, 331 13 19, 357 29, 548 236 31, 436 11, 456 62 12, 563 2, 451 34 2, 520 972 1 974
Menu 814, 220 27 814, 274 19, 708 13 19, 734 37, 489 236 39, 377 11, 769 71 13, 043 2, 457 35 2, 527 974 1 976

Table 1. Total Costs of Crawling

based crawling strategies and [9] which presents the Greedy strategy, the pub-
lished research uses Breadth-First or Depth-First strategies for crawling RIAs.
As we have seen, Breadth-First and Depth-First strategies are less efficient than
the Greedy and the model-based strategies.

[14] and [15] suggest algorithms to index a RIA. [15] offers an early attempt in
crawling AJAX applications based on user events and building the model of the
application. The application model is constructed as a graph using the Breadth-
First strategy. [14] introduces an AJAX-aware search engine for indexing the
contents of RIAs. In this model components are adapted to handle RIAs. The
crawler identifies JavaScript events and runs a standard Breadth-First search
on them. [16] offers an algorithm, called AjaxRank, similar to PageRank [17]
tailored to RIAs, to give weight to different states based on the connectivity.

[18–20] seek to automate regression and other testing of a RIA. Crawljax
[12, 21] constructs a state-flow graph of the application by exercising client-
side code and identifying the events that change the state of the application.
Crawljax differentiates states using Levenshtein distance method [22], and uses
a Depth-First strategy. [23] describes the derivation of test sequences from the
application model obtained by crawling. [24] is similar, but takes a white-box
testing approach where the program fragments of the states are analyzed.

Several other tools exist to create an FSM model of the application. RE-
RIA [25] uses execution traces to create the FSM model of the application. As
an improvement to RE-RIA, CrawlRIA [26] generates the execution traces by
running a Depth-First strategy. CreRIA facilitate reverse engineering of a RIA
for dynamic analysis. DynaRIA offers a tool to comprehend a RIA better for
testing and other purposes. It also helps to visualize the run-time behavior of
the application.

6 Conclusion

A new model-based crawling algorithm was introduced: the Menu model. The
proposed architecture models the web application based on the JavaScript events
in each state of the DOM. It makes assumptions about the category of events in
order to derive a strategy, then learns, and adapt its categories as the crawling
proceeds. A prototype of the system is implemented and the results are eval-
uated against several other model-based crawling algorithms. We have shown
empirically that Menu strategy is better than other known strategies when it
comes to finding all the states of the application being modeled.
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