

M-Crawler: Crawling Rich Internet

Applications Using Menu Meta-Model

Suryakant Choudhary

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the degree of

Master of Computer Science

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

© Suryakant Choudhary, Ottawa, Canada, 2012

ii

Abstract

Web applications have come a long way both in terms of adoption to provide information and

services and in terms of the technologies to develop them. With the emergence of richer and more

advanced technologies such as Ajax, web applications have become more interactive, responsive

and user friendly. These applications, often called Rich Internet Applications (RIAs) changed the web

applications in two primary ways: Dynamic manipulation of client side state and Asynchronous

communication with the server.

However, at the same time, such techniques also introduced new challenges. Among these

challenges, an important one is the difficulty of automatically crawling these new applications.

Crawling is not only important for indexing the contents but also critical to web application

assessment such as testing for security vulnerabilities or accessibility. Traditional crawlers are no

longer solution to these newer technologies and crawling in RIAs is either inexistent or far from

perfect.

 Thus it goes without much argument the need for an efficient crawler for the web applications

developed using these new technologies. Further, as more and more enterprise use these new

technologies to provide their service, the requirement for a better crawler become inevitable.

This thesis studies the problems associated with crawling RIAs. Crawling RIAs is fundamentally more

difficult than crawling traditional multi-page web applications. The thesis also presents an efficient

RIA crawling strategy and compares it with existent methods.

iii

Acknowledgement

First and foremost, I am indebted to my supervisors, Dr. Guy-Vincent Jourdan and Dr. Gregor v.

Bochmann for their constant support, encouragement and guidance. They have always been very

amiable and approachable advisors. Their brilliance, perseverance, and pursuit of excellence will

continue to inspire me for years. This thesis would not be possible without their knowledge,

encouragement, and guidance.

I would also like to thank my colleague Emre Dinçtürk and the member of Software Security

Research Group at University of Ottawa, including Dr. Vio Onut (IBM) for all the insightful

discussions and suggestions. I would also like to thank Seyed M. Mirtaheri for helping me with all

the test applications for experimental studies. I would like to convey my regards to Bo Wan for all

the help and advice.

In addition, I am grateful to IBM and the National Science and Engineering Research Council (NSERC)

of Canada for all their help and support. I am also grateful to the AppScan® team at IBM.

I would like to thank my dear friends Aman Ahuja, Rushi Patel, Tarush Saul, Vaibhav Sharma,

Priyambada Misra and Nikhil P.H for providing support and help all the way and making my

graduate life very fulfilling and enriching.

Lastly and most importantly, I would like to express gratitude to my parents, Sahadeo Choudhary

and Tarkeshwari Choudhary for their constant love, encouragement, and confidence in me and my

decisions. I am grateful to my brother, Sandeep Choudhary, and sister, Priyanka Kumari for their

love and encouragements. I cannot imagine completing this dissertation without the support of my

family.

iv

Table of Contents

1. Introduction .. 1

1.1 Web applications ... 1

1.2 Traditional Web Applications ... 2

1.3 Rich Internet Applications ... 3

1.4 Web Application Crawling ... 4

1.4.1 Importance of Crawling .. 5

1.4.2 Crawling Strategy .. 6

1.5 Crawling Rich Internet Applications .. 7

1.6 Motivation ... 8

1.7 List of Contributions .. 10

1.8 Organization of the Thesis ... 11

2. Challenges and Assumptions ... 12

2.1 State Definition – DOM-ID .. 12

2.2 DOM Equivalence ... 13

2.3 Event Identification ... 17

2.3.1 Event Equivalence .. 18

2.3.2 Event Execution Order .. 19

2.4 Deterministic Behaviour of the web application – Statelessness of the server .. 19

v

2.5 User Inputs .. 20

3. Related works ... 22

3.1 General RIA Crawling .. 22

3.2 Model-Based RIA Crawling ... 24

3.2.1 Overview .. 24

3.2.2 Crawling Phases ... 26

3.2.3 Hypercube crawling strategy .. 28

4. Crawling Strategy ... 30

4.1 Overview .. 30

5. Menu Crawling Strategy.. 34

5.1 Menu hypothesis .. 34

5.2 Overview .. 36

5.3 Architecture .. 40

5.4 Menu state exploration phase ... 41

5.4.1 Overview .. 41

5.4.2 Events categorization .. 43

5.4.3 Modified application graph .. 46

5.4.4 Menu Crawling strategy .. 47

5.4.5 Shortest path and Event assumptions ... 48

5.4.6 Violation of assumptions and adaptation of Strategies 50

vi

5.5 Menu transition exploration phase .. 52

5.5.1 Overview .. 52

5.5.2 Graph walk .. 54

5.5.3 Violation and Strategy adaptation .. 56

5.5.3.1 Overview ... 56

5.5.3.2 Examples of violation instances ... 59

5.5.4 Walk generator algorithm ... 66

5.5.4.1 Overview ... 66

5.5.4.2 Chinese postman problem ... 66

5.5.4.3 Tour sequence .. 69

5.6 Other transition exploration heuristics .. 72

5.6.1 Greedy Algorithm ... 72

5.6.2 Rural postman problem and Travelling salesman problem 73

6. Experiments and Evaluation of Results ... 76

5.1 Overview .. 76

5.2 Experimental Setup ... 78

5.3 Test Applications ... 80

5.4 Menu state exploration results ... 86

5.5 Menu transition exploration results .. 95

5.6 Crawling strategies results evaluation .. 100

vii

5.7 Transition exploration phase heuristics ... 101

5.7.1 Overview ... 101

5.7.2 Experimental Results .. 102

5.7.3 Transition exploration heuristics evaluation ... 104

7. Conclusion and Future Work ... 105

7.1 Summary of contributions ... 106

7.2 Future work .. 107

References ... 110

viii

List of Figures

Figure 1: Web application overview (adapted from [3]) .. 2

Figure 2: Events registered to HTML Anchor element ... 17

Figure 3: Hypercube of dimension 2 and 4 [9] ... 28

Figure 4: Menu Category Events... 34

Figure 5: Sample web applications following our hypothesis .. 35

Figure 6: Path from the current state to state, Snext, where the next event can be executed 39

Figure 7: Path from the current state to state, Snext, where the next event can be executed 40

Figure 8: State Exploration ... 42

Figure 9: Event prioritization .. 46

Figure 10: Graph showing virtual edges and known transitions ... 47

Figure 11: Event path from current state, Scurr to state with next event to execute, Snext 49

Figure 12: Violation instance .. 51

Figure 13: Graph showing virtual edges, known transitions and resets .. 54

Figure 14: Event execution violation instance (resulting in wrong state) during transition exploration

phase .. 59

Figure 15: Event execution violation instance 1 (resulting in a new state) during transition

exploration phase ... 61

Figure 16: Event execution violation instance 2 (resulting in a new state) during transition

exploration phase ... 63

Figure 17: New virtual edges added to the web application graph ... 65

Figure 18: A graph with three connected component ... 67

Figure 19: Graph with strongly connected components marked [38] ... 68

ix

Figure 20: Strongly connected components of a graph and augmentation edges to make the graph

strongly connected ... 70

Figure 21: A sample directed graph .. 71

Figure 22: Original and Transformed graph with edge costs ... 75

Figure 23: Arc cost calculation .. 75

Figure 24: Clipmarks website .. 80

Figure 25: Periodic Table Website .. 82

Figure 26: Test RIA Website .. 83

Figure 27: Altoro Mutual website ... 84

Figure 28: Hypercube10D website ... 85

Figure 30: State exploration cost for Clipmarks web application ... 87

Figure 31: State exploration cost for Periodic Table web application (Logarithmic Scale) 88

Figure 32: State exploration cost for Periodic Table web application .. 89

Figure 33: State exploration cost for TestRIA web application (Logarithmic scale) 90

Figure 35: State exploration cost for Altoro Mutual web application (Logarithmic scale) 91

Figure 37: State exploration cost for Hypercube10D web application (Logarithmic scale) 93

Figure 38: State exploration cost for Hypercube10D web application .. 93

Figure 39: State exploration statistics for each crawling strategies ... 94

Figure 40: Total cost to crawl Clipmarks web application .. 96

Figure 42: Total cost to crawl TestRIA web application ... 97

Figure 43: Total cost to crawl Altoro Mutual web application ... 98

Figure 44: Total cost to crawl Hypercube10D web application ... 98

Figure 45: Transition exploration statistics for each crawling strategies ... 99

Figure 46: Total cost to crawl Clipmarks web application .. 102

x

Figure 48: Total cost to crawl TestRIA web application ... 103

Figure 49: Total cost to crawl Altoro Mutual web application ... 104

Figure 50: Lucid Desktop [15]screenshot ... 108

1

1. Introduction

The World Wide Web or simply the web is a global communication channel facilitating

communication and collaboration among users to share information via computers connected over

the network. The introduction of the web had a major impact on how the information and services

are offered and accessed over the network. Today the internet has revolutionized the way we live

and share information to such an extent that almost all phases of our life are in one way or another

connected and controlled by the web. The web has become such an integral part of our lives that

the disruption of any of these services can have severe impact on the day-to-day working of the

modern day civilization.

1.1 Web applications

Over the past decade, with the evolution of the technologies, the web has also evolved in significant

ways from a system that used to deliver static content in the form of static web pages to a system

that now supports distributed applications. These applications are commonly known as web

applications. These applications are computer software developed using browser-supported

programming languages and technologies such as javascript [2], HTML etc. and are accessible by

web browsers.

Web applications have become one of the most extensive technologies to provide information and

service over the network in today’s world. The popularity of web applications can be attributed to

several factors, such as availability, reachability, cross-platform compatibility, fast development etc.

One important reason that has contributed largely to the success of web application is the ubiquity

2

of web browsers, and the convenience of using a web browser as a client, sometimes called a thin

client. In addition, web applications provides the convenience of making the application available

instantly to all the users without actually requiring them to be installed on potentially thousands or

millions of client computers. The advent of newer and richer technologies such as Ajax

(Asynchronous JavaScript and XML) [1] has further enhanced the experience of the web applications

with better interactiveness and responsiveness.

Figure 1: Web application overview (adapted from [3])

1.2 Traditional Web Applications

Initially, the web applications were simple HTML pages on the client sides. The complete application

logic is present at the server end and the clients behave as placeholders for the contents. Each of

these web pages had a unique Uniform Resource Locator (URL) to access it. Any access in a

traditional web application starts with the user or client (web browser) submitting the request for

these web pages identified by URLs to the web server. The web server in turn generates the

3

requested web page as a response. The client then entirely replaces the previous content with the

response received from the web server. Traditional web applications contain different sets of

documents and static HTML pages to provide all the information or functionality to the user. In

addition, each web page will have information to fetch more web pages, embedded in the form of

HTML links, which are essentially URLs of other web pages. To access other pages, the client simply

needs to use the URL corresponding to that page and send the request to the server. One major

drawback of this technique is that all the communication between the client and server are

synchronous. The client waits for the server response before performing an activity or allowing the

user to access the contents. This results in user activity being suspended until the new page is

loaded.

 The traditional web application in a way can be thought of as having mostly the server component

which decides the contents and functionalities to be provided to the user and the client as a mere

placeholder of the content without any logic or intelligence.

1.3 Rich Internet Applications

Web applications have been evolving extraordinarily fast with new programming models and

technologies, resulting in major changes on how the web applications are designed and developed.

In recent years, Rich Internet Applications (RIAs) or Web 2.0 have become the new trend for web

applications defying the notion of web applications running exclusively on the server side and client

as placeholders. With the introduction of newer and richer technologies for web application

development, web-applications have become much more useable and interactive. One of the most

important ones is the migration of server-side application logic to client-side scripting—most often

4

in the form of Javascript. This load sharing of functionality between client and server was further

made more seamless with the development of technologies such as Ajax, which form foundational

component of RIA and the next-generation of Web 2.0 applications. Although fundamentally still

being a web application, these applications represent a paradigm shift in how Web applications are

designed and developed. RIAs changed the traditional web applications in two important aspects:

First, client–side scripting languages such as javascript have allowed the dynamic modification of the

web page by updating the Document Object Model (DOM) [4], which represents the client-side

“state” of the application, sometimes without any communication with the server all together.

Second, using technologies like Ajax the client can communicate asynchronously with the server,

without having the user to wait for the response from the server. Hence, in RIAs we can reach to a

new web page without requiring a new URL load but by executing one or more events. In addition,

in both the cases the URL of the web page typically does not change during these client side

activities. Consequently, we can now have a quite complex web application addressed by a single

URL. The notion of one URL per web page or client side “state” is lost with these new web

applications.

1.4 Web Application Crawling

Crawling is the process of browsing a web application in a methodical and automated manner. The

result of crawling is the “Model” of the application which contains information about all the

discovered web pages, information about reaching these web pages from the initial web page (web

page corresponding to the initial URL of the web application where the crawling process started)

and also from one web page to another.

5

1.4.1 Importance of Crawling

Crawling is an important reason for the popularity and usefullness of the web. An important

functionality of the web in general is the information it provides. Rather the web started as a

platform for inforamtion sharing and availability. This information can only be made available if the

different information sources can be discovered and their content made available for access. This is

mostly done by the search engines such as Google, Yahoo, Bing etc. These search engines depend

upon web crawlers to discover different web pages over the internet and index their content for

access. Web crawlers are computer programs which browses World Wide Web in an automated

manner. If search engines are not able to crawl websites with information, they will not be able to

index them. Hence one of the main strenghts of the web will be lost.

In addition, crawling is also required for any thorough automated analysis of the web application

such as for security and accessibility testing. As web applications are increasingly used to deliver

security critical services, they become a valuable target for security attacks. Many web applications

are used to provide critical services such as banking transactions and often interact with back-end

database system, which may store sensitive information such as financial, health etc. A breach in

the web application security would result in unauthorized access to sensitive information leading to

severe economic losses and legal consequences. A security report by Verizon [5] shows that web

applications now rank among the top both in number of security breach incidents, and amount of

data compromised. In addition, a high percentage of web applications deployed on the internet

have security vulnerabilities [3]. The security concern is becoming more serious with development

and availability of tools that enable development and deployment web applications in a fast and

easy way. According to a report by the Web Application Security Consortium, about 49% of the web

applications being reviewed contain vulnerabilities of high risk level and more than 13% of the

6

websites can be compromised completely automatically [6]. Another security report [7] reveals that

most websites were exposed to at least one serious vulnerability every day of 2010, or nearly so (9–

12 months of the year) and the average website had 230 serious vulnerabilities.

As a result, a considerable research effort has been put to develop tools for automated assessment

of web applications for security. Crawling is an integral part of web application security assessment

tools. Without an effective crawling capability, the efforts to secure web applications will not be

able to produce satisfactory results.

1.4.2 Crawling Strategy

Crawling strategy refers to the algorithm which guides the process of crawling a web application i.e.

crawling strategy decides how the web application exploration proceeds. For example, a crawling

strategy might decide which event or link from the current page needs to be explored next in order

to efficiently discover all the web pages of the web application. The most fundamental requirement

of a crawling strategy is the construction of a correct model of the web application. Correctness of

the model makes sure that the model built as a result of the crawl is indeed the correct

representation of the web application. We believe that along with correctness, the model should

also be complete in the respect that the strategy should be able to discover all the web pages along

with the information to reach them, at least if sufficient time is given to the crawling strategy. The

information provided by the crawling strategy will be simple URLs in the case of traditional web

applications; however, with RIAs it might include a sequence of events along with the URL.

7

1.5 Crawling Rich Internet Applications

Rich internet applications introduced extensive improvements upon the traditional web

applications. These improvements resulted in multifaceted enhancements of the web applications

including better responsiveness and information flow, improved user experience, enhanced

interactivity etc. but on the other hand introduced new challenges. One of the important problems

is the difficulty to automatically crawl these websites.

Traditional crawling techniques are not sufficient for web applications built using RIA technologies.

Each web page in a traditional web application is uniquely addressed by an URL and contains URLs

of all other web pages that can be reached from the current page as embedded HTML links. A

traditional crawler would just be required to extract these URLs from a web page starting from the

initial web page and traverse them in an efficient sequence. Hence to crawl a traditional web

application it is sufficient to perform link discovery.

In RIAs, on the contrary the current web page can be changed dynamically, sometimes without even

requiring user interactions and communication with the server. This is due to the ability of

modifying web page DOM using javascript execution. A script may possibly add or replace content

that can be received from the server asynchronously. This means many of the client states in RIAs

might be only reachable by executing a sequence of javascript events (which are actions that can be

detected by javascript such as onClick and are typically triggered by user interactions) starting from

an URL of the application. In addition, automatic interaction is more difficult in a RIA environment

because of more complex script actions such as timers, mouse movement etc.

8

This dynamic nature of the RIA changed the notion of mapping the URL to the web page entirely. All

these changes has rendered the traditional crawlers inefficient and unable to crawl RIAs, except for

a few pages that have distinct URLs

1.6 Motivation

The concerns on the security of the web applications have grown along with their popularity. One of

the response to these concern about security issues was the development of automated tools for

testing web applications for security.

There are various commercial and open-source black-box web application security scanners

available (see [8] for a recent survey). A black-box web application security scanner is a tool that

aims at finding security vulnerabilities in web applications without accessing the source-code. That

is, a black-box scanner only accesses the client-side just like a regular user of the application. When

a black-box security scanner is given the URL pointing to the initial page of the application (together

with other minimal information that may be required, such as username and password, if the

application requires login), it simply tries to discover all web page (client state) of the application

that are reachable from the initial page. As the new web pages are discovered, the tool scans each

one for possible security vulnerabilities by applying test cases and reports any detected vulnerability

to the user. These tools can easily apply a large number of security tests automatically at each

discovered page which would otherwise require a long time if done manually.

Crawling is also an integral part of any web application vulnerability scanning. It is clear that

effectiveness of a security scanner depends not only on the quality and coverage of the test cases

but also on how efficient it is at discovering the pages (client-states) of the application. Unless we

9

can discover all the web pages of the web application, we will not be able to perform a throughout

security test. For web application vulnerability scanners, such as IBM® Security AppScan®, one of

the most important challenges, apart from keeping updated about new security concerns and

breaches, is to keep abreast with this advancement in the web application technologies from

traditional application to RIAs. A web scanner’s ability to crawl a web application has and will always

be integral to testing it for security. The offloading and sharing of logic and functionality between

the server and client has had major implications for automated web application crawler and in turn

web application vulnerability scanners.

Crawling provides the web scanner a similar ability of accessing the web application in the same way

a user would. Essentially, a web application vulnerability scanner will still be testing for the same

vulnerabilities in case of RIAs, but it needs to explore all the webpage or client-side states to make

sure it has covered all the functionalities and security vulnerabilities. An efficient and effective web

scanner not only needs to be intelligent enough to discover all the links but should also be able to

emulate all the events to discover all the states of the web application to provide maximum

application coverage.

To our knowledge, none of the current search engines, web application testers and analyzers has

the ability to crawl RIAs [8] .The problem gets increasingly important as more and more developers

and organizations adopt these newer technologies to put their information on the web. A

substantial amount of research efforts have been devoted to this problem with a number of

techniques developed. However, many of these techniques still rely of standard Breadth-First and

Depth-First strategies. We will discuss these techniques in related works section. In addition only

one of the techniques focuses on the efficiency of the crawler. Thus, it is desirable and urgent to

provide a systematic crawler which is not only able to crawl RIA completely but also efficiently.

10

There had also been effort to identify general patterns in RIAs and use those patterns to come up

with a reasonable anticipation of the application to design an efficient crawler. [9] introduces such a

notion called “model-based crawling”. However, the assumptions used are very strict to be realized

by most RIAs. We will discuss the details in related works section.

Primarily motivated by the aim of making web application security scanners usable on RIAs, our

research group has been working in collaboration with IBM to design efficient RIA crawling

techniques. We have also integrated the ideas of this thesis as a crawling strategy in IBM® Security

AppScan® Enterprise [10] , a security scanner for web applications.

1.7 List of Contributions

The following list describes the contributions of this work:

1. A new meta-model: “Menu Model” based on the concept of model-based crawling is

introduced.

2. A technique for event prioritization for event-based crawling is presented.

3. A complete crawling strategy for crawling rich internet applications based on menu meta-

model is presented.

4. A technique for modifying the initial strategy when the web applications contradict the

menu-model is also presented to produce efficient results.

5. A prototype which is used to crawl real and test RIAs.

6. Evaluation of the research is presented in comparison with other crawling strategies

7. Experimental results and evaluation of three different heuristics has been presented to help

design final crawling strategy.

11

A paper has been published which extends the work presented in this research [11]. Another paper

suggesting efficient methods for solving the challenge presented in Section 2.2 has been published

[12]. In addition, one patent covering the research presented in chapter 4 is in filing process at IBM

(which has delayed the process of presenting the contents of this research at appropriate

conference).

1.8 Organization of the Thesis

This document is organized as follows: Chapter 2 discuss the challenges faced while designing

efficient crawling strategies along with assumptions. Chapter 3 provides an overview of work which

is related to this research. Chapter 4 presents an overview of crawling strategy followed by chapter

5 which explains the complete strategy for crawling RIA based on menu model. Chapter 6 contains

the experimental results and comparison against other crawling strategies. Finally, the document

ends with a conclusion and discussion of future work in Chapter 7.

12

2. Challenges and Assumptions

An efficient crawling strategy is solution to just one facet of the multi-facet problem of being able to

crawl RIA for information gathering and security analysis. Being able to discover all the web pages of

the RIA not only requires an efficient crawling algorithm but also largely depends upon the

application itself and also on the purpose of the crawl.

In this thesis, we have mostly focused our attention on devising efficient crawling algorithms.

However the complete RIA crawling system is composed of many components. The following

section will describe in brief, all the challenges and assumptions made about the application and the

crawling system without going into much detail. Each of these challenges needs to be addressed as

separate research efforts to be able to arrive at an efficient system to crawl RIA. In addition, the

application is assumed to meet all the simplifying assumptions to be able to work efficiently with

our crawling strategy.

2.1 State Definition – DOM-ID

The purpose of crawling a RIA is to discover all the reachable web pages of the web application.

These web pages are the building blocks of the complete web application and are the placeholders

for the information and services that the web application is indented to provide. Further, for any

security analysis the web application security analysers also need access to these building blocks.

Each distinct web page, which can be represented by its Document Object Model (DOM), is a client-

side “state” or simply the “state” of the application.

13

During the crawling process it is essential that the crawler should be able to identify whether it has

already discovered a web page or not. This is important to avoid them from entering into infinite

loop also called crawler trap (i.e. exploring a series of page over and over again) while ensuring that

all the relevant information about the web application has been discovered.

One can use the key elements of the web page to provide the state definition such as URL of the

page, cookies (information stored on a browser by the web server) etc. However, such information

will not be valid in case of RIAs as multiple states might share the same URL.

We have used Ayoub et al.`s [13] algorithm to calculate the state identifier which is calculated from

the DOM of the web page and is referred to as “DOM-ID”.

2.2 DOM Equivalence

A web application is a complex application providing multiple types of information such as content,

structure of the web page, user inputs etc. However, it is completely dependent on the purpose of

the crawl what information is relevant. For example if a web application is being crawled for the

purpose of content indexing by search engines, then the contents of the web page are important. If

two pages have different textual content such as news article but identical structure such as input

structure for providing user comments, they should be considered different. When assessing the

web application for security vulnerabilities the elements of the web page which allows user to

provide inputs are more important that the textual content. Therefore if the previously mentioned

states contain identical user input structure but different news article, they should be considered

the same.

To be able to design an efficient crawling strategy, we should not only be able to identify the states

of the application but also be able to ignore irrelevant information (depending on the purpose of

14

the crawl) when considering whether a state should be considered different from other states. The

concept of DOM equivalence helps us achieve the same.

Mathematically, equivalence is defined as a relation that partitions a set into disjoint subsets. Two

elements of a set are considered equivalent with respect to the equivalence relation if and only if

they belong to the same subset. The intersection of two such subsets is empty and the union of all

the subsets equal to the original set. Equality is one obvious equivalence relationship which

partitions the set based on the whether the entities are identical to each other or not.

The concept of DOM equivalence takes the process of providing state definition to a level higher

where we not only define the state of the application but also define the relationship that will make

multiple states equivalent even if their state definition differ. This concept of DOM equivalence

hence helps the purpose of the crawl guide the crawling process.

Note that DOM equivalence is a notion that should be considered independent of the crawling

strategy. The crawling strategy should be able to work with any provided DOM equivalence relation.

In addition of being important for the purpose of the crawl, the choice of the DOM equivalence

relation is also crucial for the correctness of the extracted model and the efficiency of the crawler. If

the DOM equivalence relation is too lax (often fails to distinguish between pages that are actually

distinct) then this will result in states being classified as equivalent even when they should not be.

This could produce a model which is incomplete missing out states. In the scenarios where the

crawling is used for security analysis of the web application, missing states would mean that some

states will not be analysed and hence could result in undetected vulnerabilities.

On the other hand, if the equivalence relation is too strict then the model will end up containing

more states than necessary leading to state explosion and hence inefficiency.

15

Unfortunately, there is no established DOM equivalence relation that can be used for all crawling

purposes.

While the purpose of the crawling is important, the crawler’s main responsibility is to discover all

the states of the application. In [14] a basic two fold approach of defining state equivalence is

provided. Two states are considered equivalent if they satisfy the following two equivalencies:

1. “Crawling Equivalence, eqcrawling: Two states can be considered equivalent if the set of

states that can be reached from the two states are equivalent.

2. Purpose Equivalence, eqpurpose: Two states are equivalent if they are equivalent based on

the purpose of the crawl. Therefore, eqpurpose should be substituted according to the

purpose of the crawl. For instance, it would be eqsecurity if the application is being evaluated

for security vulnerabilities or eqaccessibility if the application is being assessed for

accessibility.”

In [14] it is suggested to consider both crawling equivalence and purpose equivalence to define the

DOM equivalence relationship for crawling strategy. It is also argued that depending on the purpose

of the crawl, the model of the application discovered might vary. Failing to account any one of the

two equivalencies might result in missing states, incomplete or incorrect model of the application or

failing the purpose of the crawl.

In addition, we suggested in [12] that some preprocessing of the page may be beneficial to increase

the accuracy of the DOM equivalence relation, such as to detect the “not important” parts of the

page (advertisements, counters, timestamps, session variables etc.) which should be ignored. These

methods not only help to improve the efficiency of the DOM equivalence relationship but also help

16

avoid the crawling strategy to get stuck into infinite loops or crawler traps. We suggested two

methods to increase the efficiency:

1. Load-Reload: This method helps to identify and ignore the unnecessary content of the page

which are dynamic and are not important for the purpose of the crawl, such as

advertisements. They suggest reloading the web page twice to identify the changes that

might be ignored.

2. Session Identification: This method helps to ignore the session variables which might result

in multiple URLs for the same web page resulting in the crawler accessing the same web

page over and over again. They suggest consecutive user login sequences to detect the

session variables and ignore them.

The methods suggested above are few of the methods that might help in defining a good DOM

equivalence relationship.

The problem of defining a ubiquitous DOM equivalent relationship for all crawling purpose is still an

open research area. Further, developing methods to improve the DOM equivalence for specific

purposes of crawling is another research area to explore.

For our purpose, we have used the DOM-ID of the web page along with the IDs of all the events

enabled at that page for defining the DOM equivalence relationship.

17

2.3 Event Identification

Events are actions that can be detected by javascript, such as onClick. They are registered to the

HTML elements of the web page as handlers and are generally triggered by user interactions.

However, there are also complex events that can get triggered automatically such as timers etc.

Aside from the problem of DOM equivalence, identification of events enabled at a state is another

open problem. Events identification is important for the purpose of crawling RIAs as the execution

of events might result into new states. Hence, missing out events from a state might result missing

some state of the application and hence an incomplete model. In addition, as mentioned in section

2.2 we consider set of enabled events at a state to define the DOM equivalence relationship. Failing

to recognize events enabled at a state might result in multiple states being considered equivalent

when they are not and vice versa.

Figure 2: Events registered to HTML Anchor element

Identification of an event or calculation of event id might be simplified as identification of the HTML

element that has the event registered as handler. For example, in Figure 2 one may use the path to

the HTML Anchor element in the DOM tree from the root node (XPath) to identify the event along

with the event type. Then the onmouseover event could have the ID = “/html/body/………/div/p/a” +

18

“onmouseover”. However, this approach has the problem of identifying the same event as different

if they are present at different XPath.

Another approach might be to use the HTML element’s attributes such as id if they are present,

along with the event type, to define the event. For example, the event id of the onmouseover event

in Figure 2 could be: “anchor_id” + “onmouseover”.This too, is not a reliable solution as the HTML

element might not have the id attribute.

The approaches discussed above are few techniques that could be used for event identifications but

they have their own shortcomings. Like the DOM equivalence problem, the problem of event

identification should also be considered independent of the crawling strategy. Further, the crawling

strategy should be able to accommodate any event identification method. These challenges are out

of the scope of this thesis and should be handled as separate research effort.

2.3.1 Event Equivalence

The problem of event identification can further be generalized by defining equivalence relationship

between the events similar to the equivalence relationship defined for states. The equivalence

relationship will help to determine whether multiple events at the same state or events at different

states could be considered as equivalent in the sense that they will result in equivalent states or

identical states. This might help in improving the efficiency of the crawling strategy by trying to

execute and explore events that are not equivalent as they might result in new states.

The problem of defining event equivalence relationship is yet another open challenge.

19

2.3.2 Event Execution Order

In many web applications, the order in which the events enabled at a state are executed determines

the resultant state. Since the number of permutations of a set of events grows exponential e.g. with

the number of events, trying to verify all possible permutations might require significant amount of

time.

However, trying just one possible sequence might result in an incomplete model of the application.

An example of such web application is [15] which emulates the working of a Linux operating system.

 The problem of defining a valid subset of event execution order to accommodate for all the states

that could be reached is another open challenge.

2.4 Deterministic Behaviour of the web application –

Statelessness of the server

Our crawling strategy assumes a deterministic behaviour of the web application. This means, from a

given state executing an event again should always result in the same resulting state.

The biggest caveat in assuming this deterministic behaviour is the server states of the web

application. In our crawling strategy we only include the client-side state of the web application. The

above assumption might be contradicted in the case when the client state is the same but the

server state would have changed. For example, consider a shopping website where a user can add

items to the shopping cart. The event on the page might result in different actions depending upon

the items in the cart. In such scenarios, the execution of an already executed event might result in a

20

different state. In [14], the authors also realize the importance of server-side states in building an

accurate model of the web application. They also suggest the idea of evaluating the possibility of

making a distinction between events that generate requests to the server (and thus may change the

server state) and the events that do not. Events that do not go back to the server can be crawled

entirely at the client side.

We also assume to be able to reset the web application to the initial state. A “reset” or “reload” is

the action of resetting the application to its initial state by reloading the web application initial URL.

This action is important in scenarios where we want to go to some state S, from the current state

but we have no known path to reach it. In such scenarios, we might want to reset the application to

the initial state and then go to the state S. We will be able to do so as such path exists since we

would not have been able to discover the state S in the first place.

The problem of including the server states of the web application in the process of crawling is

another open question and should be addressed as separate research effort. For our purpose we

assume the web application to behave deterministically. If the web application does not behave

deterministically we log an error and ignore the deviation. The first execution of the event defines

the behaviour of the event for the complete crawl.

2.5 User Inputs

User inputs present another challenge in crawling web applications. The next state reached by an

event may depend of the input provided by the user. The example of a shopping website where the

user can add items to the shopping cart is also a relevant example for this problem.

21

Since the set of possible user inputs can be practically infinite, determining a valid set of user inputs

which will help us analyse the web application states in an open question. In [14], the authors also

recognize the automatic determination of the format and type of values which will let the web

application function correctly to be an open challenge.

For our purpose, we sample the user input space and choose few representative user inputs for the

purpose of crawling.

22

3. Related works

3.1 General RIA Crawling

The research area of web application crawling has made significant progress over the last 15 years.

This includes remarkable papers such as [16], which is an introduction to Google. The research also

facilitated the emergence of other major search engines such as Yahoo! [17] and Bing [18]. In

addition to advancement in search engine technologies, the research also helped in the

development of crawlers for thorough analysis of web applications for security and accessibility

testing, for products like AppScan, WebInspect etc. However, the majority of the research until

recently has focussed on crawling traditional web applications.

Traditional web application crawling is a well-researched field with multiple efficient solutions [20].

In addition to the fundamental problem of automatically discovering the pages of the web

application, there have been research efforts to use the information discovered, for future crawling

purpose such as page revisit policy or page rescheduling policy used by search engines for content

indexing purpose [21] [22].

However, none the above mentioned search engines and web application analysis products, and

other existing state of the art tools in the field of web application crawling, are sufficient for RIAs

[23]. In the case of RIAs, the current research is still trying to address the fundamental problem on

crawling i.e. automatically discovering the web pages of the application. This is not surprising given

the short history of RIAs, less than a decade old.

In the last few years, several papers have been published to solve the problem of RIA crawling

mostly focusing on Ajax based applications. For example, [9] [11] focuses on crawling RIAs to enable

23

security assessment tools to analyse RIA; [24] [25] [26]focus on crawling for the purpose of indexing

and search. In [27], the aim is to make RIAs accessible to search engines that are not AJAX-friendly.

In [28]the focus is on regression testing of AJAX applications, whereas [29] is concerned with

security testing and [30] focuses on user interface testing. However, except for the work done in [9]

[11] most of the research is concerned with their ability to crawl RIAs and not much attention has

been given to the actual efficiency of crawling. Crawling RIAs in its naïve form seems like the

application of standard Breadth-First and Depth-First strategies, which have been used in most of

the published research with some modifications.

[30] [31] introduces a tool called “Crawljax” for crawling RIAs. This research has mostly focussed on

making RIAs contents accessible for the purpose of content indexing by converting the RIA to an

application containing multiple static pages. The tool uses a variation of the Depth-First strategy to

discover and build a state machine model of the application. However, the tool explores only a

subset of the events from the current state. The events that are registered to HTML elements which

are different from the previous state are explored in the current state. This approach has the

drawback of not being able to discover all the states of the application, as shown in [9]. In addition,

the tool uses a concept of distance between the states of the application called “edit-distance”, i.e.

is the number of edit operations required to transform one state to another to determine if the new

state is considered a different state. Since this concept of distance is not transitive, such

approximations may result in states wrongly categorized as equal or non-equal.

Another research effort [32] [33] used the Breadth-First strategy to crawl RIAs. To improve the

performance, they cache the results of javascript event executions. Anytime, if the same event is

called with the same parameters, the cached results will be used. The drawback with this approach

24

is that the event execution result might vary if the event is executed from a different state despite

the same parameters and also in situations where the server state would have changed.

[34] suggested a manual method to trace and record the execution sequences in RIAs. The recorded

traces are then later analysed to form the finite state machine model of the application. In a later

paper [35], they introduced a tool called “CrawlRIA” to automate the tracing process of the

execution sequences. They used the Depth-First strategy to execute the events starting from the

initial state till a state equivalent to a previously visited state is reached. The tool will then reset

back to the initial state to continue recording. All the recorded traces are later analysed later to

form the finite state machine model of the application using the same approach described in their

previous paper.

[27] also used the Depth-First strategy to crawl RIAs though they used a variable to limit the

maximum depth explored.

3.2 Model-Based RIA Crawling

3.2.1 Overview

In the case of crawling RIAs, the research is still ongoing to address the fundamental question of

automatically discovering the existing pages. This can be attributed to the lack of efficient event-

based crawling strategies. At the first instance, application of Breadth-First and Depth-First

strategies might look like a possible solution to the problem of event-based crawling. This is more or

less the approach taken in relevant research works also as discussed in Section 3.1. But none of

these researches has focused on actual efficiency of the crawling strategy. Efficiency is an important

25

factor when it comes to crawling RIAs as most RIAs are complex web applications with a very large

state space. Breadth-First and Depth-First strategies in their standard form and under specified

circumstances will eventually be able to crawl RIA. However, one important issue with these

techniques is that they are too generic and inflexible in the respect that they do not use any

information about the web application such as behaviour, structure etc. gathered during the crawl

to improve the efficiency of the crawling process. In [9] the authors indicate opportunities to be able

to design more efficient strategies by identifying general patterns in the actual RIAs being crawled

and using these patterns to come up with reasonable anticipations about the model of the

application. This approach has been defined as “Model Based Crawling”. The anticipation can be

derived from interacting with the RIA to gain a general notion of how it has been structured and

expected to interact with the user. In [9] and [11] the concept of “Model Based Crawling” is defined

as:

1. “First, a general hypothesis about the behaviour of the application is conceptualized. The

idea is to assume that the application will behave in a certain way. Based on this hypothesis,

one can define the anticipated model of the application, which is called as the “meta-

model”. This will transform the process of crawling from the discovery activity to determine

“what the model is” to the activity of validating whether the assumed model is correct”.

2. “Once a hypothesis is elaborated and an assumed model is defined, the next step is to

define an efficient crawling strategy to verify the model. Without having an assumption

about the behaviour of the application, it is impossible to define any strategy that will be

efficient”.

3. “However, it is important to note that any real world application will never follow the

assumed model to its entirety. Therefore, it is also important to define strategies which will

26

reconcile the differences discovered between the assumed model and the real model of the

application in an efficient way”.

Thus, Model based crawling defines the goal of a crawling strategy as being able to anticipate

automatically an accurate model of the application. However, the model and the strategy must be

able to satisfy at minimum the following requirements:

1. The model produced by the strategy must be correct and if given sufficient time must also

be complete i.e. it must have correct information about all reachable states and transitions

of the application.

2. The model must be built in a deterministic way. Crawling the web application twice with the

same strategy and given same server-side data, the model produced should exactly be the

same.

3. The model should be produced efficiently. The strategy should be able to gather as much

information about the application as soon as possible. Crawling an application may take

considerable amount of time and can sometimes be infinite theoretically. In such cases,

where the crawling process is interrupted before the end, the model produced by the

strategy until interrupted should be able to provide as much information as possible.

To respect the efficiency requirement, model-based crawling defines a two-phase crawling

approach described in the next section.

3.2.2 Crawling Phases

RIAs are often complex web applications that have very large state spaces. In such scenarios, it

might not be feasible to wait for the crawl to complete. Hence efficiency is always important when

27

it comes to crawling RIA. In [9] and [14] the authors introduced a reasonable notion of efficiency

stating that a crawling strategy that tends to find the states of the application early in a crawl is an

efficient strategy. More precisely, a strategy which discovers a larger portion of the application state

space early on will deliver more data during the allotted time, and thus be more efficient.

Discovering more information will not only help the search engines index more data, but will also

help security assessment tools to detect more vulnerabilities if present.

In [9] and [14] the authors defined a two stage approach according to the primary goal of finding all

states as soon as possible.

1. State exploration phase: The first phase is the “state exploration phase”. It aims at

discovering all the states of the RIA being crawled as early as possible. This phase is

important as in the given time, discovering the states are more important than discovering

the transitions of the application.

2. Transition exploration phase: Once the strategy believes that it has probably found all the

reachable states of the application, the strategy proceeds to the second phase, the

“transition exploration phase” which tries to execute the remaining transitions after state

exploration phase, to confirm that nothing has been overlooked. This phase is important as

unless we have explored all transitions in the application, we cannot be sure that we have

found all states.

28

3.2.3 Hypercube crawling strategy

To support the concept of model based crawling, in [9] a specific meta-model in the form of a

hypercube have been introduced. To form an anticipated model, the following two hypotheses have

been made:

1. The events that are enabled at a state are pairwise independent. That is at a state with a set

{e1, e2… en} of n enabled events, executing a given subset of these events leads to the

same state regardless of the order of execution.

2. When an event ei is executed at state s, the set of events that are enabled at the reached

state is the same as the events enabled at s except for ei.

e1

e2

e3

e4

{}

{e1} {e2} {e3} {e4}

{e1,e2,e3}

{e1,e2}

{e1,e2,e3,e4}

Figure 3: Hypercube of dimension 2 and 4 [9]

The above hypothesis results in an expected model of hypercube of dimension n for a state with n

enabled events. There are 2n possible subsets of n events and the hypercube has a state

corresponding to each one of the subset. Figure 3 shows an example hypercube of dimension n = 2

and n = 4. In the hypercube the states are represented by the subset of n events executed to reach

it. Each edge corresponds to a transition that is triggered by execution of one of the events. There

29

are n! different paths from the bottom state to the top state which represents the order in which

the events are executed.

In [9] two algorithms have been presented to provide the crawling strategy. In addition, these

algorithms have also been proved to produce optimal results if the web application follows

hypercube hypothesis to its entirety. The first one called “Minimum Chain Decomposition (MCD)”

algorithm provides the optimal paths to discover all the states of the application. Given that the goal

is not only visiting every state as quickly as possible, but also crawling the entire application

(execute every transition) as quickly as possible, they defined the second algorithm for transition

exploration called “Minimum Transition Coverage (MTC)” algorithm. This algorithm focuses on

executing every possible event in as few paths as possible (requiring minimum number of resets).

In [9] the authors also presented a technique to modify the initial crawling strategy in scenarios

where the web application contradicts the hypercube hypothesis.

The important aspect of the work done in [9]is that they focused on the efficiency of the crawling

along with automating the process of discovering all the web pages of the web application and they

proved it to be better than existing state of the art commercial tools and other research work.

However the assumptions made about the underlying model of the RIAs were too strict to be

realistic for most web applications and it involves complex algorithms to be implemented.

30

4. Crawling Strategy

4.1 Overview

Based on the various ways in which finite state machines (FSMs) have been previously used and

their suitability for capturing states, events, and the transitions resulting from event execution in

Ajax applications (as found in [24] and [30]), we consider FSMs as an appropriate technique for

modeling Ajax applications.

A web application can be conceptualized as a Finite State Machine with “states” representing the

distinct web pages and transitions representing the event executions. The aim of the crawling

process is to uncover the model of the web application. We represent the model by an underlying

weighted directed graph G = (V, E) where

- V is the set of vertices such that each vertex Vi in V represents a distinct state Si.

- E is the set of labeled directed edges (arcs) such that an edge (Vi, Vj; e) in E represents

the transition from state Si to Sj which is triggered by the execution of event e at state Si.

The label of the arc represents the event type such as onClick event.

- Event execution cost represents the weight of the edges. The cost is measured in terms

of the time taken by the javascript engine to execute the event and pass back the result

to the crawl strategy. For simplicity we assume all event have the same execution cost.

The crawling process proceeds by starting with a single vertex Vinitial representing the initial state S-

initial reached by loading the initial or base URL of the application. As the crawling proceeds, the

model is augmented by adding new vertices for each newly discovered state and new edges are

31

added for newly discovered transitions. The crawling process finishes when the model cannot be

augmented anymore with new information (all the states and transitions have been discovered).

The crawling strategy can discover a new web application state in RIAs in two ways. First, by

following a HTML link embedded in the current web page and by execution of an event in the

current page.

1. Traditional Crawling

Traditional crawling strategy focuses on exploration strategies for the URL (HTML links)

embedded in the current state of the web application. In [19] the basic crawling process of such

applications is described. In brief, first the URL is loaded to get the web page. The web page is

then parsed to discover all the links (URLs) present in that page. All the newly discovered URLs

are then in turn explored and the crawling finishes when there are no new URLs left to be

explored.

2. Event Based Crawling

In the context of RIAs, the state of the application can also be changed by javascript event

executions. The execution of an event can result in adding or deleting contents of the current

web page by manipulating the DOM of the page or in completely new web page. In event-based

crawling, the strategy focuses on deciding which unexecuted event among the enabled events at

the current page or among other already discovered pages should be executed next.

32

The crawling strategy returns a list of one or more events back to the script execution engine

which then executes all the events returned in one sequence. Once the script execution engine is

finished executing all the events, it calls the crawling strategy to decide upon the next set of

events.

There are few concerns that are specific to event based crawling as compared to following URLs

in case of traditional crawling approaches.

1. Event executions such as javascript event executions cannot be reverted back by using

the back or history button as in the case of HTML Link click, as the event executions do

not register themselves to the history of the browser. However, the behaviour can be

realized by caching the page before executing the event.

2. The server state may have changed due to javascript event execution and caching the

page will just help us retrieve the client state of the web application and not the server

state.

3. Caching the page may result in memory-size issues if the application has large state

space and caching each state is required for the strategy to function efficiently.

The overall RIA crawling strategy should accommodate both the cases of state discovery i.e.

traditional and event based crawling, to be able to build the complete model of the application. If

the crawling strategy focuses on one specific approach, then it might result in an incomplete model

missing out states of the web application. Although combining two strategies in an efficient manner

is not the focus of this thesis and should be handled as separate research effort.

33

We focus only on designing efficient strategies for event based crawling in this thesis. We also use

the event execution count as the metrics for evaluating the performance of the crawling strategy.

Since execution of an event by the javascript engine and producing the result takes time, we believe

it is a reasonable metrics to evaluate the performance. In addition, as mentioned in Section 2.4 we

also make use of a special type of event, called “reset”, which is the action of resetting the

application to its initial state. We measure the performance in terms of the number of events and

resets required to discover all the states first and then all the transitions of the application. We say

that a crawling strategy that tends to finds the states of the application early in the crawl is an

efficient strategy, since finding the states is the goal of crawling.

34

5. Menu Crawling Strategy

5.1 Menu hypothesis

Following the notion of model based crawling; we introduce here a novel hypothesis called “Menu

Model”. To form the anticipated model, we make the following hypothesis about web applications:

“The result of an event execution is independent of the state (source state) where the event has been

executed and always results in the same resultant state”

We can conceptualize this as a unique mapping between the event and resulting state.

{Event} -> {Result_State}

Figure 4: Menu Category Events

35

We believe that it is a reasonable hypothesis since for many events of the web applications such as

mouse click events, execution of the event results in the same resulting state irrespective of the

state in which the event was executed. Such behaviour for example is realized by the menu items

present in a web application or other common applications such as “home”, “help”, “about us” etc.

Executing these menu items will result in the same resulting state. We call these events menu

events, the model as menu model and the corresponding crawling strategy menu crawling strategy.

Figure 5: Sample web applications following our hypothesis

The sample web applications in Figure 5 are examples that follow our hypothesis in the sense that

clicking on the items such as home, services etc. always produces the same results i.e. the resulting

web application state is always the same irrespective of the state in which the item was clicked.

36

Following on the guidelines of model-based crawling, we introduce crawling strategies for the two

phases, namely state exploration phase and transition exploration phase. Furthermore, it is very

unlikely that a web application will follow our hypothesis to its entirety such that all the events

enabled in the web application will always result in the same resulting state. Rather, the resulting

state might not only depend upon the event executed but also on the state from which the event

was executed. To handle such violations, we also introduce adaptations to be followed by the

crawling strategies to result in an efficient crawling process.

5.2 Overview

The menu model crawling strategy is an event-based exploration strategy. The underlying strategy

of the menu model is the process of categorizing the events enabled in all the discovered states into

different priority sets. The priority of the set is defined by the execution count of the events present

in that set. The execution count of the event represents the total count of execution instances of

the event from different states. For example, the crawling strategy defines a set of global

unexecuted events which contains all the events which have not been executed anywhere in the

application discovered so far. Similarly, it defines another set called menu events which contains all

the events in the application which follow our hypothesis in the way that their execution from

different states led to the same resulting state.

The priority is defined as:

1. First, the events with lower execution count have higher priority compared to events having

higher execution count.

37

2. Secondly, the events contradicting our hypothesis have higher priority over the events that

follow our hypothesis.

Events with higher execution count generally converges to a set of resulting states, if not to one in

case the application contradicts our hypothesis. Hence the events higher execution count are more

likely to result in one of the already discovered states and the events with less execution count have

higher probability of discovering a new state. Further, the events which follow our hypothesis will

always result in the same resulting state and hence it is more reasonable to prioritize events which

contradict our assumption higher.

The categorization of the events is an ongoing process throughout the crawl. The priority sets are

updated as new enabled events are found in newly discovered states and as more information

about results of the execution instances of the events are found. In addition, the events are moved

from higher priority set to lower priority as their execution count increases.

The menu crawling strategy maintains the model of the application discovered so far as a weighted

directed graph, G = {V, E} where V represents all the states discovered and E represents all the

transitions i.e. executed events discovered so far along with some predicted information and resets.

Resets are represented as known transitions in the graph however with different cost. We will

discuss the details and purpose of the predicted information and resets later in the section.

Each vi in V contains following information about the state it represents:

1. State ID

This is the ID of the state which is used by the state equivalence function to help the

crawling strategy decide whether a state has already been visited or not. As described in

Section 2.1, it contains the DOM-ID of the web page and the list of the IDs of all the events

38

enabled at that state. The DOM-ID and event IDs are calculated using the algorithm

mentioned in Sections 2.1 and 2.3.

2. Executed events

It contains the list of the IDs of all the events that have already been executed from this

state and their resulting state IDs.

3. Unexecuted events

It contains the list of the IDs of all the events that are enabled at this state but have not yet

been executed.

Similarly, each ei in E contains the following information about the event it represents:

1. Event ID

This is the ID of the event represented by this transition and is calculated as described in

Section 2.3. It contains the complete string of the HTML element the event is registered to

and the type of the event

2. Predicted

This flag signifies whether the execution result of the event has been assumed. The flag is

false for all the known transitions i.e. all the events that have been executed. The details

and the purpose of this flag will be discussed later in this section.

The menu crawling strategy also maintains the following information about all the events enabled at

all the states discovered so far:

1. Event ID

This is the ID of the event.

39

2. Priority

It represents the priority of the event.

3. Resulting State

The DOM-ID of the state reached on the first execution of the event.

The menu crawling strategy uses the event priorities to decide the next event to execute. If the

selected event is not present in current state, Scurr then the strategy tries to find the shortest path

to the state, Snext where the selected event is enabled and unexecuted. We use Dijktras’s [36]

shortest path algorithm to calculate the shortest path from the Scurr to Snext. The shortest path

algorithm is run on the instance of the graph G maintained by the menu crawling algorithm. It is

important to note that the shortest path will also contain the predicted transitions. In addition we

also make use of “shortest known path” which is calculated similarly but does not include predicted

transitions.

Figure 6: Path from the current state to state, Snext, where the next event can be executed

For example, in Figure 6, the shortest path function returns the event list {E1, E2 and E3}. Events E1

and E3 are already executed events, represented by known transitions. Event E2 is an unexecuted

event and is represented by a predicted transition. Event Ex is the unexecuted event to be executed

next by the menu crawling strategy.

40

Following the model-based crawling approach, the menu crawling strategy consists of two phases:

1. Menu state exploration phase

2. Menu transition exploration phase

The menu crawling strategy may alternate between these two phases multiple times before

finishing the crawl. The strategy finishes the crawl when it has executed all the events in the

application which guarantees to have discovered all the states of the application.

5.3 Architecture

IBM® Security AppScan® Enterprise [10] is a product for analysing websites for security

vulnerabilities and accessibility issues. We have integrated our strategy in the AppScan® framework

to crawl the web applications. Figure 7 shows the overall architecture of the integration of menu

crawling strategy with AppScan®. The crawling strategy of AppScan® calls the menu crawling

Figure 7: Path from the current state to state, Snext, where the next event can be executed

41

strategy with the DOM of the current web page along with all the events enabled at that page. The

menu crawling strategy then decides upon the next set of events to be returned back to AppScan®.

The tool then executes all the events from the list one after another in the same sequence as

present in the list and returns the DOM of the resulting web page along with the enabled events to

menu crawling strategy. This process continues till menu crawling strategy is finished executing all

the unexecuted events in the application.

Integrating the menu crawling strategy with AppScan also allows for the possibility of using an

equivalence function which also takes the purpose of the crawl into account since AppScan contains

such functions (for example for accessibility or security testing). The menu crawling strategy calls

the state equivalence module of AppScan® with the DOM of the page and list of enabled events.

The tool returns the calculated the state id which is the “DOM-ID” of the DOM of the page along

with IDs of all the events.

5.4 Menu state exploration phase

5.4.1 Overview

The primary goal of the menu state exploration phase is to discover all the states of the application

as soon as possible. The menu state exploration phase will be henceforth referred to as state

exploration phase.

The state exploration phase tries its best to find all the states of the application as soon as possible

so that if the crawling is interrupted before the end, it would have discovered all the states or a

42

majority of them. However, one important point is that such a best effort approach does not

necessarily guarantees that the actual results will be the same as expected. The menu crawling

strategy uses a greedy approach in the sense that it tries to discover a new state at the shortest

path from the current state. This means that maximizing the number of discovered states after 1

event execution might result in lowering the value after 2 or more event executions. This becomes

evident in the example below where the menu crawling strategy is able to discover a new state by

executing one event from the current state. However, it losses in terms of the total number of

events required to discover more new states.

For example, consider the part of the application state space shown in the figure below.

Figure 8: State Exploration

43

All the events in Figure 8 are already executed events from other states than the states shown in

the figure. In addition, the event E1 has the highest priority among all other events. Also states 0, 2,

6 and 7 are already discovered states and states 1, 3, 4 and 5 have not yet been discovered and

hence are new states of the application. The menu crawling strategy will give priority to E1

compared to others. However, it might be argued that it is preferable to execute E2 prior to E1 as it

will help us discover more states with less total event executions (our primary goal).

But, since we don’t have any prior information about the web application, the menu crawling

strategy try to use greedy approach to try to discover new states with least cost from the current

state. This will help us achieve our goal if the execution would have been interrupted just after one

event execution from state 0. In this situation, we would have found one more state compared to

executing E2. However, if the algorithm would have been run for more duration, executing E2 would

have given us better result. Hence, the best effort strategy not necessarily guarantees optimal

results.

The state exploration phase finishes when it believes to have discovered all the possible states that

could be found based on the strategy.

5.4.2 Events categorization

To assign priorities to events for deciding the next event to execute, the state exploration phase

defines the following categories of events based on the execution count:

1. Globally unexecuted events:

These are the events that have not yet been executed at any state discovered so far. These

events have the highest priority in the list of events to be executed next. We believe

44

executing a new event which has not yet been executed anywhere in the application has

more probability of discovering a new state than the events that have already been

executed at some state. This is reasonable as already executed events are assumed to have

the same resulting state from all the states.

2. Locally unexecuted events:

These are the events that have been already executed at some discovered state but have

not been executed at the current state of the application. If the application behaves in

accordance with our hypothesis, then these events will always result in already discovered

state. Only in the case where the application contradicts our assumed model, these events

might discover new states or result in already discovered states different than their earlier

results. To help define the priority among the local unexecuted events the state exploration

phase distinguishes the following sub-categories.

2.1 Non-classified event:

These are the events that have been executed just once. However, our hypothesis

assumes that their second or further execution will result in the same state as

resulted in their first execution instance. These events have the priority next to

globally unexecuted events.

2.2 Non-Menu events:

These are the events that have been executed more than once and have resulted in

different states on their consecutive executions from different states and hence are

the events that contradict our hypothesis. For example events such as next or

previous events which are used for navigation in a web page such as fetching

45

next/previous image or articles belong to this category, since every execution of the

event will probably result in different state. However, one important note can be

made that the different states are not necessarily new states. These events have

the same priority as non-classified events.

2.3 Menu events:

These are the events that have led to the same resulting state on consecutive

executions from different states. These are the events that follow our hypothesis.

We believe that the probability of these events resulting in a different (already

discovered) or new state on third or further executions is low, given that it has

resulted in the same state on the first two executions. Hence these events are given

the least priority among all events.

2.4 Self-Loop events:

As the name indicates, these are the events that have resulted in the same state

from where they were executed. For example events such as refresh events belong

to the category of self-loop events. Self-loops events are the events that do not

cause any change in the state based on the state definition and state equivalence

relationship. These events have the same priority as menu events.

46

Figure 9: Event prioritization

Figure 9 shows the prioritization of different types of event to be selected for execution. The Non-

classified and Non-menu events have the same priority at the application level i.e. when the menu

crawling strategy searches for the next event to be executed, then a state with either events has the

same priority to be picked up next. However if the next selected state has unexecuted events from

both categories, then Non-classified events are prioritized over Non-menu event to be executed

next.

5.4.3 Modified application graph

The menu crawling strategy maintains a modified version of the application graph. Along with the

discovered states and transitions, the graph G also contains some predicted edges. These edges

correspond to the non-classified, menu and self-loop events from states where they are enabled but

have not yet been executed. The predicted resulting state of unexecuted menu and non-classified

event is the state which was reached on their first execution. Similarly, for unexecuted self-loop

events the predicted resulting state is the same state where the event is enabled.

47

Figure 10: Graph showing virtual edges and known transitions

Figure 10 shows an instance of such a modified graph. The events represented by the bold lines are

known transitions i.e. already executed events. The events represented by partial dashed lines are

predicted edges i.e. the resulting state of these events have been assumed. In addition, each state

has the option to go back to the initial state by using reset.

5.4.4 Menu Crawling strategy

The state exploration phase starts with categorizing the events enabled at the initial state. All the

events will initially belong to the globally unexecuted category. If more than one event has the same

priority at a current state then one among them is picked at random. As the crawling proceeds, the

state exploration phase updates the priority sets with newly discovered information.

48

The menu crawling strategy uses the priority of the events to decide the next event to be executed.

As stated in previous section, all the events from a higher priority set are exhausted before

executing an event from lower priority set. Hence, at any given point in the state exploration phase,

the whole application (discovered so far) is searched to find an event with highest priority. If the

selected event is not enabled or has already been executed at the current state Scurr, the menu

crawling strategy finds the state where the event has to be executed, Snext.

As the crawling proceeds and new application states are discovered, all the events enabled at the

newly discovered states are placed into different set based on their priority. Also for each non-

classified, menu and self-loop events discovered, the strategy adds a predicted edge to the graph to

be used by the shortest path algorithm.

During the state exploration phase, the menu crawling strategy executes all the unexecuted events

in the application except for categorized menu and self-loop events. These events have high

probability of resulting in already discovered states and hence are not explored in state exploration

phase. These events will be handled by the transition exploration phase which we will describe in

later sections.

5.4.5 Shortest path and Event assumptions

The menu crawling strategy uses Dijktra’s shortest path algorithm [36] to find the shortest path

from the current state, Scurr to the next state with an unexecuted event, Snext. As discussed in the

previous section, this algorithm uses the modified version of the graph which contains predicted

edges for any unexecuted non-classified, menu or self-loop events. The shortest path is a list of one

or more events. Executing the list of events is guaranteed to lead us to the state, Snext only in

49

scenarios where all the events present in the path are already executed events i.e. known

transitions. When the graph contains predicted edges, we can no longer guarantee that we will

reach state Snext on execution of the path. If any of the events whose result has been assumed,

contradicts our assumption, then we might end up in some different state than the expected one.

The menu crawling strategy uses a modified shortest path function in the respect that it returns the

path as a combination of multiple path segments instead of a single list of events. This is done to

verify the intermediate predicted edges results. If these edges result in violation then the current

path will become invalid and hence the strategy would need to adapt. We will discuss the details of

strategy adaptation in next section. In addition, menu crawling strategy does not verify all the

intermediate states in the path but only the states reached after the execution of predicted edges.

Each path segment is a list which might start with a reset followed by zero or more already executed

events and ending with an event whose result has been predicted and the predicted resulting state.

In the figure above, event E1 is an already executed event from current state, events E2 and E3 are

menu events whose results have been assumed and Ex is the next event to be executed by the

menu crawling strategy. The path function will return the following path segments to the crawling

strategy:

PATH_Snext:

Scur Sint1 Sint2 Snext

E1 E2 E3 Ex

Figure 11: Event path from current state, Scurr to state with next event to execute, Snext

50

1. Path segment 1: Event List ={ E1, E2 }, Expected State = { Sint2 }

2. Path segment 2: Event List = { E3 }, Expected State = { Snext }

3. Path segment 3: Event List = { Ex }, Expected State = { null }

The menu crawling strategy executes one path segment at a time i.e. it returns one path at a time to

the AppScan® tool and then verifies the result obtained by comparing the resulting state against the

expected state until it reaches the state Snext or it encounters a violation in between.

5.4.6 Violation of assumptions and adaptation of Strategies

The menu crawling strategy makes assumptions about event execution results which we refer as

predicted edges. However it is very likely that the web application will sometimes contradict our

assumption and the actual result of an event execution will be different from the predicted one. In

such scenarios, we discard all the current path information and follow the same process of finding

the path to the state with next unexecuted event from the current (violated) state. The example

below describes the process in detail.

51

Figure 12: Violation instance

For example, in Figure 12 the execution of the path segment 1 of PATH_Snext described earlier

results in a violation and the menu crawling strategy finds itself in state S’ rather than state Sint2. In

this scenario, the menu crawling strategy ignores all the further path segments information i.e. path

segment 2 :{E3} and path segment 3: {Ex} as they might no longer be valid. Instead, the menu

crawling strategy starts the same process again to build a path from the current state reached to the

next state with an unexecuted event. However, the next state S’next decided this time might not

necessarily be the same as the previously decided one, Snext.

The violation of the assumption might be favourable for the menu crawling strategy in the cases

where the resulting state is a new state. In this case, we would have discovered a new state over a

shorter path i.e. less event executions.

52

The menu crawling strategy ignores the violation of the predicted edges. However, if the event

resulting in violation is a non-classified event then the menu crawling strategy categorizes the event

before starting with the process of finding the path to the next unexecuted event.

The state exploration phase tries to execute all the events discovered except for the categorized

menu and self-loop events. These are represented by predicted edges in the application graph.

However, some of them might get executed as part of the path segments to reach to the state with

next event to execute. After this the menu crawling strategy moves to the next phase of the crawl:

Transition exploration phase.

5.5 Menu transition exploration phase

5.5.1 Overview

The transition exploration phase tries to verify the validity of all the assumptions made at the end of

the state exploration phase and executes all remaining menu and self-loop events. This is important

as unless we execute all the events in the application we do not know for sure whether we have

discovered all the states of the application. If the application follows our hypothesis, then we are

guaranteed to have found all the states of the application by the end of state exploration phase.

However, in the case that some of the menu or self-loop events do not follow the assumptions, they

may lead to a new state that was not discovered during state exploration phase.

53

The primary goal of the transition exploration phase is to find a least cost path to execute all the

remaining events in the application. The cost of this path is measured in terms of the total number

of events and resets required to execute all the remaining unexecuted events at least once.

A sequence v0, e1, v1, e2… vn-1, en, vn where vi are vertices, ei are edges, and for all i the edge ei

connects the vertices vi - 1 and vi is called a walk of the graph.

We can conceptualize the transition exploration problem as finding a least cost walk of the

application graph traversing through all the edges representing the unexecuted events at-least

once.

The transition exploration phase does not expect to discover any new states but it may. The newly

discovered state and events enabled at this new state might result in the discovery of more new

states. Since we always have the priority of finding all the states of the application as soon as

possible, we pause the transition exploration phase when a new state is discovered and return to

the state exploration phase. The state exploration phase proceeds in the same fashion as discusses

before.

When the state exploration phase finishes, the transition exploration phase starts again, in the same

fashion. The menu crawling strategy might alternate between the state and transition exploration

phases multiple times before finishing the crawling the process.

54

5.5.2 Graph walk

During the transition exploration phase, the application graph contains edges corresponding to

executed events, predicted edges corresponding to unexecuted menu and self-loop events along

with reset edges from each state to the initial state. The transition exploration phase calculates a

walk of the application graph to cover all the unexecuted events possibly using already executed

events and resets.

Figure 13: Graph showing virtual edges, known transitions and resets

In Figure 13, events E1, E2 (at states S0 and S1) and E3 (at state S1) are unexecuted events and

events E3 (at state S2) and E0 (at state S3 and initial state) are executed events i.e. known

55

transitions of the graph. The results of all the unexecuted events have been assumed. A possible

walk can be thought of as a sequence { E1, E3, E0, E2, E3, E0, E1, and E2} starting at vertex S0 and

terminating at vertex S2. There can be multiple such walks, but transition exploration phase aims for

least cost walk.

The transition exploration phase uses a walk generator function to calculate the walk for executing

all the remaining edges. We will discuss the details of the walk generation algorithm in later section.

However, one important concern is that the application graph includes predicted transitions. Hence,

executing the event sequence given in the walk might not result in the expected coverage. After a

single violation the menu crawling strategy might get diverted and the event sequence might no

longer be valid.

Hence, the transition exploration phase uses a step-wise construction of the whole walk similar to

the shortest path construction in state exploration phase. Before returning the complete sequence

of events, the walk generator function splits the event sequence into multiple walk segments. Each

walk segment might start with a reset followed by zero or more already executed events and ending

with an event whose result has been assumed along with the expected resulting state.

For example, the sample walk defined for the Figure 13 is { E1, E3, E0, E2, E3, E0, E1, and E2} . This

walk information is segmented as:

Walk Segments, WALK_G:

1. Walk segment 1: Event List = {E1}, Snext = {S0}, Expected State = {S1}

2. Walk segment 2: Event List = {E3}, Snext = {S1}, Expected State = {S3}

3. Walk segment 3: Event List = {E0, E2}, Snext = {S0}, Expected State = {S2}

4. Walk segment 4: Event List = {E3, E0, E1}, Snext = {S0}, Expected State = {S1}

56

5. Walk segment 5: Event List = {E2}, Snext = {S1}, Expected State = {S2}

The event list of a segment represents the list of event to be executed before the resulting state will

be verified against the expected state. The expected state represents the state that should be

reached after the event sequence execution if the application follows the hypothesis. The state

Snext represents the state from which the next unexecuted event would be executed in that

segment.

The transition exploration phase will have instances where the predicted events will result in

violation the resulting state of a segment will be different from the expected state. We describe the

violation and strategy adaptation in detail in the next section.

5.5.3 Violation and Strategy adaptation

5.5.3.1 Overview

The menu crawling strategy executes the complete walk as a list of walk segments as returned by

the walk generator function. However, it is very unlikely that the application will follow our

hypothesis in its entirety and hence we will have instances where the execution of an assumed

event will result in some other state than the expected state. The violation will result in one of the

following scenarios:

1. Wrong state

The resulting state is an already discovered state but different from the expected state of the

walk segment. This violation might render the walk no longer being the least cost walk of the

graph. This might happen because the walk generator function had used the assumptions about

57

the resulting state to define a least cost walk. The violation however has updated the graph in

two ways: First, the predicted edge will no longer exist and second, a new edge is added for the

executed event resulting in a different state.

An option could be to use the new information and recalculate a new least cost walk. However,

the walk generator function uses complex algorithms and heuristics to define a least cost walk.

This operation is both CPU and time intensive and hence it is not favourable to calculate the walk

over and over again. In general, the time required to calculate the shortest path from the

violated state to the next state Snext and executing the path to realign is much less as compared

to recalculation of the walk. In addition, if the application contradicts our assumption for a

majority of event then the transition exploration phase would be spending most of its time in

recalculation of the walk rather than executing all the remaining events.

Hence, for efficiency the menu crawling strategy ignores the violation and continues with the

same walk defined before. The menu crawling strategy finds a shortest known path to the next

event in sequence from the current state and continues with the walk similar to the process

followed in state exploration phase. Note that as described earlier the shortest known path will

not contain any predicted edges.

2. New state

In the instance when the violated state is new state of the application, we pause the transition

exploration phase temporarily and return back to the state exploration phase.

In addition, the transition exploration phase does not discard the walk calculated in the

transition exploration phase. It keeps all the later walk segments from the currently executed

one in a buffer before pausing the transition exploration phase. The state exploration phase

continues in the similar fashion as described in the previous section. Though during the state

58

exploration phase, the menu crawling algorithm will save and keep track of any newly discovered

information such as new unexecuted menu and self-loop events, new states and new transitions.

The menu crawling strategy returns back to transition exploration phase after finishing with state

exploration phase.

At this time, the walk saved in the buffer might no longer be least cost or valid. This might

happen first because of the same reasons of violation discussed above. Second, the state

exploration phase might have added new menu and self-loop events to the graph and they are

not accommodated in the current walk. Hence executing the walk will miss these newly added

unexecuted events.

However, for the same reason of efficiency as discussed above the menu crawling strategy uses

the walk saved in the buffer before pausing the transition exploration phase and accommodates

the newly added unexecuted events later.

The transition exploration phase realigns to the saved walk after returning back from the state

exploration phase by finding the shortest known path from the current state to the state Snext of

the walk segment just next to the violated walk segment.

Once the menu crawling strategy finishes with the current transition exploration phase i.e. executes

all the walk segments of the current walk, WALK_G, it searches the application for any remaining

unexecuted events which might have been discovered during the current transition exploration

phase. If there are still some unexecuted events, the menu crawling strategy will again start with

transition exploration phase by defining a new walk on the remaining unexecuted events.

59

5.5.3.2 Examples of violation instances

To avoid the cost of recalculating the walk becoming the performance bottleneck of the crawling

process, the menu crawling strategy prefers to realign to the already defined walk. The menu

crawling strategy does this by finding the shortest known path from the current state to the state S-

next of the walk segment just after the walk segment which resulted in the violation.

Continuing with the same walk defined in previous section, WALK_G, suppose the walk segment 2

i.e. event list {E3} resulted in violation with the resulting state Sv as shown in Figure 14

1. Wrong state

Figure 14: Event execution violation instance (resulting in wrong state) during transition exploration phase

60

If the resulting state Sv is an already discovered state then the menu crawling strategy finds

the shortest known path to the state which has the next event to be executed i.e. the state

S0 which is present in walk segment 3. Suppose the shortest path returned by the function is

Ex. The path Ex is a list of one or more already executed. The walk segment 3 is then

modified by discarding all the other events except the last unexecuted event in the list and

including Ex. Hence, the new walk segments will be:

 WALK_G:

1. Walk segment 3: Event List = {Ex, E2}, Snext = {S0}, Expected State = {S2}.

2. Walk segment 4: Event List = {E3, E0, E1}, , Snext = {S0}, Expected State = {S1}

3. Walk segment 5: Event List = {E2}, Snext = {S1}, Expected State = {S2}

The transition exploration phase will continue in the same fashion as if no violation

happened.

2. New state

The example below describes the scenario in detail in the case when the violated state Sv is

a new state. The example contains two violation scenarios i.e. the menu crawling strategy

goes back to state exploration phase twice and realigns to the saved walk after it finishes

each state exploration phase.

61

Figure 15: Event execution violation instance 1 (resulting in a new state) during transition exploration phase

In the case when Sv is a new state, the menu crawling strategy saves all the remaining walk

segments. The buffer will store the following walk segments: -

1. Walk segment 3: Event List = {E0, E2}, Snext = {S0}, Expected State = {S2}.

2. Walk segment 4: Event List = {E3, E0, E1}, , Snext = {S0}, Expected State = {S1}

3. Walk segment 5: Event List = {E2}, Snext = {S1}, Expected State = {S2}.

62

Suppose during the state exploration phase, menu crawling strategy discovers some more

new states, transitions, menu and self-loop events. In Figure 15, states S’1 and S’2 are newly

discovered states during state exploration phase. State Sv is the violated state. Events ES’1

and ES’2 (at state S’1) are newly discovered transitions and are represented by known

transitions in the application graph G. E1 (at state S’1 and Sv) and ES’2 (at state Sv) are newly

discovered menu events and are added as predicted edges.

The state exploration phase ends at state S’2 which is the current state in the crawling

process. Instead of recalculating the walk for the performance reasons as discussed above,

the menu crawling strategy uses the walk which was saved in the buffer before leaving

transition exploration phase. In addition it also saves and keeps track of all the new

information discovered during the current state exploration phase in another buffer.

However, the walk saved before coming back to state exploration phase will not

accommodate for the newly added unexecuted menu events E1 and ES’2.

In this scenario also, the menu crawling strategy finds the shortest known path {Ex}, from

the current state to the state Snext saved in the buffer and continues with the previously

defined walk. Hence the new walk segments are:

1. Walk segment 3: Event List = {Ex, E2}, Snext = {S0}, Expected State = {S2}.

2. Walk segment 4: Event List = {E3, E0, E1}, , Snext = {S0}, Expected State = {S1}

3. Walk segment 5: Event List = {E2}, Snext = {S1}, Expected State = {S2}

The menu crawling strategy continues in the same fashion with the transition exploration

phase as discussed above.

63

Figure 16: Event execution violation instance 2 (resulting in a new state) during transition exploration phase

Let’s suppose the menu crawling strategy encounters another violation while executing

walk segment 3 and it arrives at state S’’2 instead of the expected state S2. The menu

crawling strategy will again save all the walk segments after walk segment 3 and will start

with the state exploration phase. In the state exploration phase, state S’’1 is a newly

discovered state; events E2 (at state S’’1) and E0 are unexecuted menu events and are

64

represented by the predicted edges. Executed event ES’’1 is added as newly discovered

transition to the application graph G.

Once the menu crawling strategy is finished with the state exploration phase, it will again

calculate the shortest known path {Ex’} from the current state S’’1, to the state Snext. The

new walk segments for the transition exploration phase will be:

1. Walk segment 4: Event List = {Ex’, E1}, , Snext = {S0}, Expected State = {S1}

2. Walk segment 5: Event List = {E2}, Snext = {S1}, Expected State = {S2}

The menu crawling strategy will continue to execute the same walk ignoring any violations

encountered till it executes all the walk segments. In case of newly discovered states and transition

back to state exploration phase, it will keep track of all the new information discovered and added

to the application graph G.

Once the menu crawling strategy finishes with the current transition exploration phase i.e. done

executing all the walk segments of WALK_G, it checks for any remaining unexecuted events in the

application. If there are still some unexecuted menu and self-loop events in the application, the

menu crawling strategy will start with the transition exploration phase again by calling the walk

generator function. This time the walk will contain only those events that have been discovered new

during the complete transition exploration phase just finished.

65

Figure 17: New virtual edges added to the web application graph

Figure 17 shows the new predicted edges added to the application graph G during the last transition

exploration phase. The walk generator function will use the know transitions, new predicted edges

and resets to define the least cost walk covering these predicted edges at least once.

The menu crawling strategy might alternate between state and transition exploration phase

multiple times till it discovers all the states and transitions of the web application.

66

5.5.4 Walk generator algorithm

5.5.4.1 Overview

The walk generator algorithm is responsible for calculating the walk around all the unexecuted

events in the application graph G covering each unexecuted event at least once possibly using other

executed event and resets. The walk generator algorithm uses the Chinese postman walk to

generate the sequence of events to be returned back to the menu crawling strategy.

5.5.4.2 Chinese postman problem

In arc routing problems (ARPs), the aim is to determine a least-cost traversal of a specified arc

subset of a graph, with or without constraints. Such problems occur in a variety of practical contexts

and have long been the object of attention by mathematicians and operations researchers.

Before we could explain the algorithm, we should revisit some of standard graph definitions

1. Eulerian graph and tour

In graph theory, a graph is said to be Eulerian if there exists a graph cycle starting and

ending at the same vertex such that each edge of the graph is covered exactly once. Such

cycle is called “Eulerian cycle” or “Eulerian tour”.

2. Chinese postman problem or Chinese postman tour (CPT)

The Chinese postman problem is to find a shortest closed path or circuit that visits every

edge of the graph. The CPT is a tour in a weighted graph, whose tour weight (defined as the

sum of weight of the edges traversed by the tour), is minimum. If the graph is Eulerian then

67

an Euler tour is the optimal solution as it traverses each edge exactly once. The graph may

be undirected, directed or mixed. Computationally, the undirected and directed cases are

polynomial, whereas the mixed is NP-hard [37].

3. Connected component

 In graph theory, a connected component of a directed graph is a sub graph in which any

two vertices are connected to each other by paths, and which is connected to no additional

vertices.

Figure 18: A graph with three connected component

For example, the graph shown in Figure 18 has three connected components. A graph that

is itself connected has exactly one connected component, consisting of the whole graph.

4. Strongly connected component

 A directed graph is called strongly connected if there is a path from each vertex in the

graph to every other vertex by traversing edges in the direction(s) in which they point. In

particular, this means paths in each direction; a path from vertex a to vertex b and also a

path from vertex b to vertex a.

68

Figure 19: Graph with strongly connected components marked [38]

The strongly connected components of a directed graph G are its maximal strongly

connected subgraphs. If each strongly connected component is contracted to a single

vertex, the resulting graph is a directed acyclic graph, the condensation of G. Figure 19

shows a graph with three strongly connected components.

Our situation is similar to the Rural Postman Problem [39], where given a graph we want a least cost

tour covering only a subset of the edges. The application graph contains known transitions

corresponding to executed events and predicted transitions corresponding to unexecuted menu and

self-loop events. We need a least cost tour to execute all the remaining unexecuted events.

However due to efficiency reasons which will become evident in Section 5.7 we model our problem

as an instance of Chinese postman problem instead of Rural postman problem. In Chinese postman

problem, given a graph we want a least cost tour of all the edges. However, the current application

graph G also contains edges corresponding to executed events. Hence to model our problem as a

Chinese postman problem, we consider only that part of the graph that has not yet been traversed,

as a sub-graph G’. This graph contains only the predicted edges i.e. only unexecuted events from the

application graph along with the vertices incident upon them. Based on this graph G’, defining a

Chinese postman tour (CPT) will likely produce an optimal tour covering all the remaining

69

unexecuted events. We say likely because one preliminary requirement to define CPT on a graph is

that the directed graph has to be strongly connected which might require adding additional edges

to the graph corresponding to executed events and resets.

5.5.4.3 Tour sequence

To define a CPT on the application sub graph G’, the subgraph first has to be made strongly

connected if it is not.

 In mathematics and computer science, connectivity is a basic concept of computer science which

asks for the minimum number of elements (vertices or edges) which needs to be removed to

disconnect the remaining vertices from each other. For example a graph is bi-connected if removing

two or more vertices makes the graph disconnected and so on. Many good algorithms have been

developed for solving such problems [41] [42] [43] [44]. We can turn this idea around and ask

questions about how many edges must be added to a graph to make it strongly connected to assist

our situation.

One important point to note that in case of web application graphs we can always make the graph

strongly connected as we can always reset to the initial state from any state and there always exists

a path from initial state to all the discovered states. We need to make the subgraph G’ strongly

connected possibly by adding edges corresponding to the executed events from the application

graph G and using resets.

We have used Eswaran and Tarjan augmentation algorithm [45] [41] to make the sub graph, G’

strongly connected. In brief, this paper suggest following steps:

1. Find all the strongly connected components in the graph. This can be obtained easily using

Depth-First search [43]

70

2. Replace all the strongly connected components by single vertex, called graph condensation

(G0).

3. Add edges in the graph G0 only if there is an edge in the sub graph G’ from one strongly

connected component to another. This can also be constructed easily using Depth-First

search

4. Once G0 is built, add edges to make G0 strongly connected which will eventually make G’

strongly connected.

5. Use the augmentation algorithm provided in the paper to calculate the set of edges to be

added to make the graph G0 strongly connected. The possible set of edges might include

edges corresponding to executed events from application graph, G and resets.

Figure 20: Strongly connected components of a graph and augmentation edges to make the graph strongly connected

Once the graph, G’ is strongly connected, we use Harold Thimbleby’s algorithm [40] for calculation

of the Chines postman tour on the graph, G’. In short the algorithm works as follows:

71

1. Find all the vertices in the graph that are unbalanced i.e. the number of incoming edges and

outgoing edges are not same.

2. Balance the vertices so that each vertex has the same number of incoming and outgoing

edges by duplicating some edges. The optimal set of duplicate edges is decided by

optimization problem solving techniques. The algorithm uses cycle-cancelling optimization

technique [46]

3. Once all the vertices are balanced, define an Euler tour on the graph using standard

algorithms [47].

For example, the Figure 20 defines the CPT on a directed graph. Taking each arc to be of equal

weight, a least cost open tour is 1, 3, 0, 1, 2, 3, 0, 2, which traverses only 7 arcs.

Figure 21: A sample directed graph

Once the complete sequence of events is found, the walk generator function breaks the complete

walk into multiple walk segments as described in previous section.

72

5.6 Other transition exploration heuristics

This section explores heuristics other than the Chinese postman tour to find a better walk of the

unexecuted events in the graph.

The CPT defined on the sub-graph G’ might not be least cost as to strongly connect the sub-graph

G’, we add edges corresponding to executed events and resets. Hence we have experimented with

other heuristics with an attempt to make the current walk better. However, as the experimental

results will suggest, the CPT is still the best solution among all the options explored.

5.6.1 Greedy Algorithm

The Greedy algorithm consists of finding the nearest unexecuted event from the current state and

executes it. The algorithm uses a shortest known path algorithm to find the path to the nearest

state with an unexecuted event. The algorithm continues till it has executed all the unexecuted

events in the graph.

This approach has the advantage of being simple and easy to understand and implement. Also it is

easy to adapt in violations of the assumptions since one never calculates the complete path.

In addition, this approach also produces reasonable results the details of which we will discuss in

the experimental section.

73

5.6.2 Rural postman problem and Travelling salesman problem

In graph theory, Chinese postman problem (CPP) requires a tour to traverse each edge of the graph

at least once with minimum total cost of the tour. There exists another problem similar to the CPP

and it requires finding a least cost tour to traverse only a subset of the edges at least once. This

problem is known as “Rural postman problem” (RPP) and unlike CPP is a NP-Complete problem [39].

This problem is exactly the situation we have in transition exploration phase. After the menu

crawling strategy finishes with state exploration phase, the application graph G has edges

corresponding to executed events and predicted edges corresponding to unexecuted events. At this

point, we need to find a least cost tour in terms of sequence of events to be able to execute all the

remaining unexecuted events in the application possibly using resets and executed events. The rural

postman problem is suitable for this problem scenario but it is an NP-Complete problem, no

efficient optimal solution exists.

Yet another problem in graph theory which is helpful in our situation is the “Traveling salesman

problem” (TSP). It can be stated as follows: Given n cities and the geographical distance between all

pairs of these cities, the task is to find the shortest closed tour in which each city is visited exactly

once [48]. More formally, the tour length

74

has to be minimized, where dij is the distance between city i and city j and ∏ a permutation of <1, 2,

. . . , n>. Thus, an instance I = <D> is defined by a distance matrix D = (d)ij, and a solution (TSP tour) is

a vector ∏ with j = ∏(i) denoting city j to visit at step i. TSP is also a NP-Complete problem.

The TSP has been widely used as a problem for testing new heuristic algorithms and general

purpose optimization techniques. As a result, highly effective heuristics have been proposed and

developed that are capable of solving TSPs for very large instances of graph [49] [50].

An approach to solve a combinatorial problem to transform the problem into some another

combinatorial problem where there exist better heuristics [51] [52].

We have used the Laporte’s [51] graph transformation algorithm to convert our problem to an

instance of TSP. The reason for transformations is motivated by the availability of extremely

efficient heuristics for TSP and easy accessibility to already implemented packages and libraries. In

brief the transformation algorithm works as follows:

We consider the graph G = (V, A), where V is the set of vertices and A is the set of arcs in the original

graph. Let A’ be the set of required arcs i.e. the set of arcs that needs to be traversed at minimum

cost and V’ be the set of vertices incident upon A’. To transform an arc routing problem on a graph

G’ = (V’, A’) into an equivalent vertex routing problem on a graph G~ = (V~, A~), we proceed as

follows:

1. Each vertex vi ϵ V’ in relabeled vii

2. Each arc (vi, vj) ϵ A' is replaced by a required vertex vij

3. The vertex set V~ is then made up of all vertices vij defined under point 1.

4. Each vertex pair (Vki, Vlj) in the transformed problem defines an arc of A~ having a cost C~ij

= Sil + Clj, where C~ii =0, Sil is the shortest known path from vertex vi to vertex vl and Clj is

the cost of the arc (vl, vj) in the original graph G.

75

Figure 22: Original and Transformed graph with edge costs

Figure 23: Arc cost calculation

We have used Keld Helsgaun’s implementation of Lin-Kernighman Heuristic (LKH) [53] [54] to help

generate a walk for our application graph G. It is one of the current state-of-the-art TSP solvers [55]

[56].

The experimental section presents the results and analysis of the three approaches (CPT, Greedy

and TSP) to define a walk of all the remaining unexecuted events of the application graph G after

the state exploration phase.

76

6. Experiments and Evaluation of Results

5.1 Overview

We evaluate the performance of the menu crawling strategy in this section and provide comparison

against the Depth-First, Breadth-First and Hypercube strategies.

We have used the number of events and resets executed as the metrics to evaluate the

performance of different crawling algorithms. “Reset” as mentioned in Section 2.4, is the action of

resetting the application back to the initial state by reloading the initial URL. For simplicity we have

combined the events and resets executed into a single cost factor expressed as the total number of

events. For this purpose, we have calculated the cost of rest in terms of the number of events. The

cost of reset if application-dependent and is calculated prior to the crawl by finding the ratio of

average time it takes to load the initial page of the application and average execution time of

randomly selected events in the application. We have used the number of events as metrics for

performance evaluation, since the time to crawl is proportional to the number of events executed.

It is important to mention that we are only interested in two factors to define the efficiency of the

crawling algorithms.

1. Total cost to discover all the states of the application

The cost required to discover all the states of the application. This cost is important as it

might not be feasible to finish the crawling and we would want to explore as much state as

possible within the given runtime of the algorithm. Hence it is very important to find what

77

percentage of the total state space has been discovered by the crawling algorithm at a given

time during the crawl.

2. Total cost to finish the craw

The second cost we are interested in is the total cost to finish the crawl i.e. finish executing

all the events in the application.

We compare performance of the menu crawling strategy with standard Breadth-First and Depth-

First. We compare with these strategies as they are standard graph exploration strategies and most

of the published crawling results have used a variation of them as discussed in related works

section. It is important to mention that our implementations of Breadth-First and Depth-First

strategies are optimized to use the shortest known path to reach the next state to explore. In other

words, instead of using systematic resets as required by the strategy to reach a state to be explored

next, we use the shortest known path from the current state. The un-optimized versions of the

strategies fare much worse.

We also present a comparison of menu strategy against the Hypercube strategy [9]. Since [9] has

already proved the efficiency of the hypercube strategy against current state-of-the-art commercial

products and other published strategies for crawling RIAs, we have not presented any comparison

of the menu crawling strategy with other published results in the field of RIA crawling.

It is important to mention that the menu crawling strategy includes operations such as calculation

of walk on the graph for transition exploration, calculation of shortest path etc. These operations

are CPU and time intensive esp. the calculation of walk on the graph. This factor is important for

comparison and evaluation purpose as a crawling strategy which has a lower total cost in terms of

the total number of events but takes more time to finish the crawl is not efficient compared to

78

another crawling strategy which has higher total cost but takes less time. However, for all the test

applications used for the experiments the time required to calculate the important operations of

menu crawling strategy such as walk on the graph, is negligible as compared to the total crawling

time. Hence, the total crawl time is proportional to the total cost of the crawl, which is used as the

parameter for the comparison and evaluation purpose.

We also present, for each application the optimal number of events and resets required to explore

all the states of the application. It is important to understand that this optimal value is calculated

after the fact, once the model of the application is obtained. In our case the optimal path to visit all

states of the application can be found by solving the Asymmetric Traveling Salesman Problem

(ATSP) on the graph instance obtained for the application after the crawl. This seems a reasonable

strategy as we have modelled the web application as directed graphs with states as nodes and event

executions as directed edges. Before calculating the optimal cost, we define the pair wise distance

or cost between all pairs of states. The cost of a path from one state to another is the number of

events and resets required to go from the first state to another. All state pairwise distance is

possible as all states are reachable from the initial state and from every state we can reach the

initial state, possibly using reset. We have used an exact ATSP solver [57] to get the optimal path.

5.2 Experimental Setup

For experimental purpose, two states are equivalent if they have the same DOM-ID, which is the

state definition calculated from the DOM of the web page and have the same set of enabled events.

By enabled events, we mean all the actions that can be detected by Javascript such as onClick. As

mentioned in Section 2.1 we use Ayoub et al.`s algorithm [13] for generating the DOM IDs. Also we

79

consider the complete string of the HTML element that has the registered event and the type of

event, as the definition of the registered event in the calculation of the event ID. For example, the id

of “onmouseover” event will be:

{“ This is a

changing color text. Try it! ” + “onmouseover”}.

For the event IDs, if two events on the same or different page result in the same id then we consider

only one of them. It just means that our current ID calculation mechanism cannot distinguish

between the two events, but they are actually different events on the page.

State Equivalence Relationship: DOM ID + {Events Enabled}.

 In an effort to minimize the impact that the ordering of the events in a given state may have on the

performance of crawling, the events in each state are randomly ordered for each crawl. In addition,

each application is crawled 10 times with each strategy. The results shown have been obtained by

averaging the results of 10 crawls.

IBM® Security AppScan® Enterprise [10] is a product for analysing websites for security and

accessibility issues. We have integrated all the experimental code as a module in the AppScan®

framework.

The experimental results are based on testing using a machine running Windows 7 with 4GB RAM

and a 1.66 GHz Intel Core i7 CPU.

80

5.3 Test Applications

We have used 2 real and 3 test RIAs for the experimental purpose. We start with an overview of the

applications used for experiments.

5.3.1 Clipmarks

Figure 24: Clipmarks website

The first real application considered is Clipmarks [58] [59]. Clipmarks is a RIA which allows its users

to share parts of any webpage (images, text, videos) with other users. Since the live version of the

website changes in real time, we have used a partial local copy of the website for the experimental

study in order to be consistent between successive crawls and different crawling methods. The basic

functionality of the web application can be summarized as follows. The initial page of the

application contains a list of clips or items which have been recently voted (popped) by users on the

81

left hand side of the page. For each clip, we have the title of the clip, the user who shared the clip,

the number of votes received by the clip. Clicking on the clip brings detailed information on the right

hand side of the web page. In addition, for each clip the user can see the list of users who voted for

the clip by clicking on the number of votes, can share the clip on other social networking websites,

follow the user who posted the clip and vote for the clip etc. Each of these actions opens/changes

the content of the dialog DIV. The states discovered by our crawler in this application are mainly

characterized by the content of clip displayed on the right hand side and the contents of the dialog

DIVs that are currently open.

 This web application is a very good example of how easily a RIA can have huge state space, making

it almost impossible for the crawlers to completely crawl the web application in reasonable amount

of time. The original web application contains 40 clips in the first page. We have limited the number

of clips to restrict the state space of the application. Restricting the number of clips to just 10 clips

resulted in 2663 states and more than 200,000 transitions.

For our experimental evaluations, we have limited the number of clips to 3 to be able to gather the

data for all the crawling algorithms in reasonable time and the reset cost is evaluated to be 18 i.e.

resetting the application to the initial state is equivalent to executing 18 events.

82

5.3.2 Periodic Table

Figure 25: Periodic Table Website

The second real RIA we consider is an AJAX-based periodic table [60] [61]. The periodic table

contains the 118 chemical elements in an HTML table. Clicking on each element brings the

information about that element asynchronously and places it in a pop-up (a content display

window), thus leading to a different state according to our DOM equivalence function. The pop-up

shows information about only one element at a time. All the states except the initial state are

reachable from each other, thus forming a complete graph. In addition, there is a “Toggle Details”

anchor at the top of each page which switches the style of the current page between two alternate

styles. Along with changing the style, the event registered to the anchor also changes and thus

resulting in a different state. This result in another copy of the complete graph mentioned earlier

linked where the states have the same content as the first graph with differing only in the event

registered at the anchor. In total 240 states and 29034 transitions are identified by our crawler with

reset cost of 8.

83

5.3.3 Test RIA website

Figure 26: Test RIA Website

The third application is test application we have developed using AJAX [62]. In TestRIA, we tried to

mimic the basic structure of a typical company website (or a personal homepage). Each state of

TestRIA contains 5 menu items at the top. They are “Home”, “Services”, “Store”, “Pictures” and

“Contact”. Each of the menu items leads to different sections of the website. Home leads to the

initial state. The Store and Pictures also contain the common Previous/Next events for navigation

purpose such as getting next picture or store item etc. TestRIA has 39 states and 305 transitions

with a reset cost of 2.

84

5.3.4 Altoro Mutual (Bank) website

Figure 27: Altoro Mutual website

The fourth website is a test application and it mimics the website of a bank [63]. The website

contains links to perform administrative tasks, login process, normal banking transactions such as

transfer funds, check account balances etc. The local version of the website is an Ajax-fied version of

the original website i.e. all the HTML links have been converted to javascript events and the

content is fetched asynchronously using Ajax. The website has 45 states and 1210 transitions and a

reset cost of 2.

85

5.3.5 Hypercube website

Figure 28: Hypercube10D website

The last application, called Hypercube10D, is an AJAX test application which has the structure of a

10 dimensional hypercube. Since we are comparing our results against the hypercube strategy too,

it seems a reasonable idea to compare our strategy against the hypercube strategy in its best

scenario too. The Hypercube10D represents the best case scenario for the hypercube strategy. The

application has 1024 states and 5120 transitions and reset cost of 3.

The Hypercube10D web application does not have any transition exploration phase for the menu

crawling strategy as none of the events follow the menu hypothesis and hence the menu crawling

strategy does not enter the transition exploration phase.

86

5.4 Menu state exploration results

As discussed in the above section, we are not only interested in the total cost to discover all the

states of the application but also in what percentage of the total state space has been discovered by

the crawling algorithm at a given time during the crawl.

For the evaluation purpose we have used a line graph with x-axis representing the number of states

discovered and y-axis representing the number of events executed. This graph not only helps us

compare the total cost of discovering all the states but also to track the performance during the

crawl i.e. the number of states discovered during any point in the crawl. We aim at finding all or a

majority of the states of the application as soon as possible. Hence, a crawling algorithm with a

lower cost during the crawl (determined by the slope of the line representing the crawling algorithm

and the intermediate points representing the cost of discovering a percentage of the states of the

application) is a better choice than a crawl with a lower total cost but a worse performance during

the crawl.

It is important to note that the menu crawling strategy might take more than one state exploration

phase (in the case when the transition exploration phase discovers a new state and returns back to

state exploration phase as discussed before) to discover all the states of the application. So the

graph does not necessarily represent the result of one state exploration phase but the total cost of

discovering all the states. In addition, we represent only the total cost for the optimal strategy.

Also, the graph represents the number of events required to discover the states of the application

but the states might not necessarily be discovered in the same order for each crawling strategy.

We also present the total number of events and resets along with the total cost required to discover

all the states of the application for each of the crawling algorithm evaluated.

87

5.4.1 Clipmarks

Figure 29: State exploration cost for Clipmarks web application (Logarithmic scale)

Figure 30: State exploration cost for Clipmarks web application

88

The menu crawling strategy proves the best among all other crawling strategies for clipmarks despite the

fact that a very small percentage of the web application follows the underlying hypothesis. For Clipmarks,

only 500 transitions follow the menu hypothesis out of 10580. The menu crawling strategy not only has a

lower total cost but also is the best among all other algorithms during the crawl progess.

5.4.2 Periodic table

Figure 31: State exploration cost for Periodic Table web application (Logarithmic Scale)

89

Figure 32: State exploration cost for Periodic Table web application

The menu crawling strategy again proves better than all other crawling strategies with the least total cost of

10244. The second best, the hypercube stratgy has lower cost after the state count 145, although the menu

strategy is much better untill, 60% of the state space exploration and also with a lower total overall cost.

The Depth-First and Breadth-First strategies perfomance are not even comparable with Depth-First having

an staggering cost of 978348.

90

5.4.3 TestRIA

Figure 33: State exploration cost for TestRIA web application (Logarithmic scale)

Figure 34: State exploration cost for TestRIA web application

91

The menu crawling strategy provides excellent results for the TestRIA website with not only lowest total

cost but also lowest cost during the crawl as seen in the Figure 34. The results are quite encouraging as the

second best, the hypercube strategy is expensive by a factor of eight (appx.), which is very high considering

the application has only 39 states and 305 transitions.

This application has been designed to model general-purpose web sites such as a company or personal web

site. The results makes the menu crawling strategy very favourable for general purpose crawling.

5.4.4 Altoro Mutual

Figure 35: State exploration cost for Altoro Mutual web application (Logarithmic scale)

92

Figure 36: State exploration cost for Altoro Mutual web application

The Altoro Mutual web application mimics the working of a banking website and is used by the IBM®

AppScan® team for tool demonstration purpose. The results are again good with the menu strategy leaving

behind other strategies by significant margins not only in the total cost but also during the progress of the

crawl. This makes the menu crawling stratgy not only favourable for general-purpose crawling as suggested

by the TestRIA results but also a good crawling strategy for web applciation designed to cater specific

functionalities such as banking operations. The second best, the hypercube strategy is almost nine times

costlier, while the Depth-First and Breadth-First strategies are much farther in the comparison table.

93

5.4.5 Hypercube10D

Figure 37: State exploration cost for Hypercube10D web application (Logarithmic scale)

Figure 38: State exploration cost for Hypercube10D web application

94

This web site represents the best-case scenario for the hypercube strategy. In contrast, this website

presents worst-case scenario for the menu strategy as none of the events follow the menu

hypothesis. All the events belong to the non-menu category. Even in this scenario, the menu

crawling strategy performs significantly better than the Depth-First and Breadth-First strategies

with the differences by a factor of three to four times.

In additon, the menu crawling strategy perfoms very comparable to the hypercube strategy at the

beginning of the state space exploration; for instance the menu strategy has a cost of 466 compared

to 401 for the hypercube strategy to discover the first 250 states and a cost of 1187 comapred to

929 to discover the first 500 states of the web application.

5.4.6 Summary

Figure 39: State exploration statistics for each crawling strategies

Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Menu 3,109 22 3,496 10,124 12 10,224 115 1 117 100 4 108 7,171 987 10,133

Optimized Depth-First 20,111 45 20,923 977,806 68 978,348 1,343 1 1,345 7,469 14 7,496 23,033 4,090 35,303

Optimized Breath-First 12,458 891 28,498 28,914 7,505 88,950 1,095 54 1,203 2,081 332 2,744 28,069 5,111 43,402

Hypercube 10,918 14 11,167 29,684 70 30,245 870 1 872 903 25 953 2,076 252 2,832

Optimal 128 2 164 239 1 247 57 1 59 72 1 74 1,646 252 2,402

State Exploration

Clipmarks Periodic Table TestRIA AltoroMutual Hypercube10D

Web Application

Crawling Strategies

95

The menu crawling strategy proves to be the best for all the websites, except Hypercube10D. In addition,

the total cost of the menu crawling strategy is significantly better than other crawling strategies esp. against

the Depth-First and Breadth-First strategies.

5.5 Menu transition exploration results

The transition exploration cost represents the total cost required to finish the crawl. In this section we

present the total number of events and resets executed along with the total cost to finish the crawl for each

crawling strategy evaluated. The crawling strategy with the lowest total cost is a better crawling strategy.

However, the state exploration cost will still be a more dominating factor to determine the best crawling

strategy. Hence, we will still prefer a crawling strategy with a lower state exploration cost compared to a

crawling strategy with higher state exploration cost but lower transition exploration cost.

96

5.5.1 Clipmarks

Figure 40: Total cost to crawl Clipmarks web application

The menu crawling strategy proves efficient as compared to the Depth-First and Breadth-First strategies

with a slightly higher cost than the hypercube strategy.

5.5.2 Periodic table

Figure 41: Total cost to crawl Periodic Table web application

Events Resets Cost

Menu 11,678 68 12,893

Optimized Depth-First 20,384 73 21,692

Optimized Breath-First 15,349 931 32,098

Hypercube 11,357 56 12,357

Clipmarks

Web Application

Crawling Strategies

Events Resets Cost

Menu 36,998 235 38,878

Optimized Depth-First 978,095 236 979,983

Optimized Breath-First 64,851 14,633 181,918

Hypercube 29,970 236 31,858

Periodic Table

Web Application

Crawling Strategies

97

The menu crawling strategy performs significantly better than the Depth-First and Breadth-First strategies.

The hypercube strategy performs better than the menu strategy in this case; however the state exploration

phase was favourable for the menu strategy.

5.5.3 TestRIA

Figure 42: Total cost to crawl TestRIA web application

The menu crawling strategy proves the most efficient for the TestRIA application. This result is encouraging

as the menu crawling strategy also performed the best for the state exploration and hence it further

supports the use of the menu crawling strategy for general-purpose crawling.

Events Resets Cost

Menu 973 1 975

Optimized Depth-First 1,412 1 1,414

Optimized Breath-First 1,219 55 1,328

Hypercube 994 1 996

TestRIA

Web Application

Crawling Strategies

98

5.5.4 Altoro Mutual

Figure 43: Total cost to crawl Altoro Mutual web application

The menu crawling strategy is again the best for the transition exploration for Altoro Mutual web

application. It showed similar results for the state exploration, making it a very good crawling strategy for

such applications.

5.5.5 Hypercube10D

Figure 44: Total cost to crawl Hypercube10D web application

Events Resets Cost

Menu 2,464 34 2,531

Optimized Depth-First 7,493 34 7,561

Optimized Breath-First 3,074 333 3,739

Hypercube 2,489 34 2,557

AltoroMutual

Web Application

Crawling Strategies

Events Resets Cost

Menu 8,867 1,260 12,647

Optimized Depth-First 23,050 4,098 35,344

Optimized Breath-First 28,159 5,120 43,519

Hypercube 8,860 1,260 12,640

Hypercube10D

Web Application

Crawling Strategies

99

The menu crawling strategy has a significantly better performance than the Depth-First and Breath-First

strategies. In addition, it performs almost equivalent to the hypercube strategy with a difference of just

seven. This is important result in favour of the menu strategy as this is the best-case scenario for the

hypercube strategy and the worst-case scenario for the menu strategy.

5.5.6 Summary

Figure 45: Transition exploration statistics for each crawling strategies

The menu crawling strategies has significantly better results than the Depth-First and Breadth-First

strategies for all the web applications. In addition, it has very comparable results against the hypercube

strategy.

Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Menu 11,678 68 12,893 36,998 235 38,878 973 1 975 2,464 34 2,531 8,867 1,260 12,647

Optimized Depth-First 20,384 73 21,692 978,095 236 979,983 1,412 1 1,414 7,493 34 7,561 23,050 4,098 35,344

Optimized Breath-First 15,349 931 32,098 64,851 14,633 181,918 1,219 55 1,328 3,074 333 3,739 28,159 5,120 43,519

Hypercube 11,357 56 12,357 29,970 236 31,858 994 1 996 2,489 34 2,557 8,860 1,260 12,640

Transition Exploration

Clipmarks Periodic Table TestRIA AltoroMutual Hypercube10D

Web Application

Crawling Strategies

100

5.6 Crawling strategies results evaluation

As an overall evaluation of the results, we can confidently say that menu crawling strategy outperforms the

Depth-First and Breadth-First strategies by a significant margin. In addition, it outperforms the hypercube in

most of the cases or is comparable in the worst-case. For websites which follow the menu hypothesis to an

extent such as TestRIA, Altoro Mutual etc., the menu crawling strategy produces very promising results for

both state exploration and transition exploration. Even for websites such as Clipmarks, which has just 500

transitions that follow the menu hypothesis out of 10580, the menu strategy performs significantly better

than all other crawling strategies.

The results on the Hypercube10D website produce some very important characteristics about the menu

crawling strategy. Since the test website follows the hypercube hypothesis to its entirety, the hypercube

produces near optimal results. The menu crawling strategy produces comparable results only differing in

later half of the state exploration. This is significant as the website is one of worst-case scenario for menu

crawling strategy with 0 transitions that follow the menu hypothesis out of 5120. This makes the menu

strategy a good candidate for general purpose crawling flaring well even in the worst-cases.

These are very encouraging results as the menu crawling strategy is simple to understand and implement.

The hypercube strategy on the other hand requires strict assumptions about the web application and

involves complex algorithms that will probably not be understood by most.

So our conclusion is that the menu crawling strategy is a better choice, much simpler and actually more

efficient than the hypercube strategy.

101

5.7 Transition exploration phase heuristics

5.7.1 Overview

We also experimented with some walk generation heuristics along with Chinese postman tour for menu

transition exploration phase as discussed in Section 4.3.5. These heuristics have been used to generate a

walk on the graph after the menu crawling strategy finishes with the state exploration phase. The walk

generated by each heuristic is used exactly in the same way as the walk generated by the Chinese problem

tour was used by the menu crawling strategy during transition exploration phase. We have presented the

total cost to finish the crawl for each of the heuristic. We have used a bar graph to represent the evaluation

results. The x-axis of the graph represents the heuristic used to generate the walk for the menu transition

exploration phase and y-axis represent the total number of events executed.

Along with the total cost of the walk generated (measured in terms of the total number of events) by a

heuristic, the calculation time taken by the heuristic to generate the walk is also important. As a walk with a

cost 100 events (say) more than another is considered better if the other walk generation algorithm takes 1

(say) minute more than the first one. The motivation behind this is that during that 1 minute of time, the

first algorithm would have already finished.

Hence a maximum run time has been specified for the heuristics for each web application. This value is

application-dependent and calculated prior to the crawl. It is approximated based on the total duration of

the crawl using Chinese postman tour for menu transition exploration phase and the time to execute an

event. After the run time is over, the best solution found by the heuristic till that time is used as the walk.

102

It is very important to mention that the time take by all the heuristics to generate the walk on the graph is

negligible as compared to the total crawl time of the web application. Hence, the walk generation time has

been ignored for the evaluation purpose and only the total cost of the crawl has been used for comparison.

5.7.2 Experimental Results

5.7.2.1 Clipmarks

Figure 46: Total cost to crawl Clipmarks web application

As we can analyse from the graph, the Greedy and the Chinese postman tour performs much better

than the LKH heuristic. Among Greedy and Chinese postman, both perform equally well with the

Greedy strategy having a slight edge. This difference will become clearer as we go through the data

for other websites.

5.7.2.2 Periodic Table

Chinese Postman Tour Greedy Strategy TSP: LKH Heuristic

12,893 12,699 32,117

Transition Exploration Heuristics

103

Figure 47: Total cost to crawl Periodic Table web application

In total the web application has 240 states and 29034 transitions as identified by our crawler.

However, when trying to use the graph transformation and the LKH Heuristic, the weight matrix

containing the transformation information became unmanageable and hence a shorter version of

the application with 180 states and 16374 transitions was used to compare the results.

For this web application, the Chinese postman tour defeats all other heuristics by good margin.

5.7.2.3 TestRIA

Figure 48: Total cost to crawl TestRIA web application

The Chinese postman tour again has the best total cost of 975. Since the web application is small

with only 305 transitions, the differences between the approaches are not so significant.

5.7.2.4 Altoro Mutual

Chinese Postman Tour Greedy Strategy TSP: LKH Heuristic

19,715 25,392 31,917

Transition Exploration Heuristics

Chinese Postman Tour Greedy Strategy TSP: LKH Heuristic

975 993 1,008

Transition Exploration Heuristics

104

Figure 49: Total cost to crawl Altoro Mutual web application

As per the statistics, the Chinese postman tour is the best among all the heuristics with the Greedy

strategy having worst performance.

5.7.3 Transition exploration heuristics evaluation

Based on the results obtained, we can conclude that the Chinese postman tour provides overall better

results than other heuristics.

Surprisingly a simple strategy like the Greedy algorithm has produced very good results. The Greedy

algorithm gives a tough comparison however; it worsens as the website size increases as seen in the

periodic table website. This is expected as the Greedy algorithm is a simple strategy and follows the same

naïve approach for all the websites. Also for most other websites, the final value of the Chinese postman

tour is always the best except for Clipmarks; differing only by a small value.

The LKH Heuristics have been mostly developed to work efficiently for symmetric instances. Though it also

accepts asymmetric travelling salesman problem data, the results weren’t satisfactory as compared to the

symmetric counterpart of similar size graphs.

The Chinese postman tour looks like an appropriate fit for the menu crawling strategy.

Chinese Postman Tour Greedy Strategy TSP: LKH Heuristic

2,531 3,090 2,696

Transition Exploration Heuristics

105

7. Conclusion and Future Work

Web applications have come a long way both in terms of the adoption to provide information and

services and in terms of the technologies to develop them. With the emergence of richer and more

advanced technologies, web applications have become more interactive, responsive and user

friendly. As the trend to adopt RIAs increases, a better crawling strategy for these useable and

sophisticated websites will become a necessity. As seen in the above results, standard crawling

strategies such as the Depth-First and Breadth-First strategies performs poorly and as the

application size increases, the performance become much worse with depth first search requiring

staggering 978384 event executions for the periodic table web application with just 240 states and

29034 transitions. The [9] shows that efficient strategies are possible using the notion of “Model-

Based Crawling”.

This thesis introduces a novel idea based on the concept of “Model-Based crawling”. Our strategy

aims at finding most of the states of the application as soon as possible but still eventually finds all

the states and transitions of the web application. Experimental results show that this new algorithm

performs very well and outperforms the standard crawling strategies by a significant margin.

Further, it also outperforms the hypercube strategy in most cases and it performs comparably in the

least favorable example, while being very much simpler to understand and to implement. Since

hypercube has already been shown to be better than the current state of the art commercial

products and other research tools, this is a significant result.

106

7.1 Summary of contributions

The main contributions of this thesis are the following:

1. Menu Model:

A new meta-model based on the concept of model-based crawling has been introduced.

2. Event prioritization:

A novel technique for prioritizing the execution of events has been introduced to help

discover all the states of the application as soon as possible.

3. Complete crawling strategy:

A complete crawling strategy based on menu meta-model has been presented for crawling

rich internet applications. The crawling strategy uses the assumptions of menu model and

event prioritization to provide an efficient crawling of the application.

4. Adaptation strategy:

We will rarely encounter web applications that will follow the menu model hypothesis to its

entirety. A technique to modify the crawling strategy in case of violations has also been

presented to produce efficient results.

5. Prototype crawler:

A prototype crawler based on menu meta-model has been presented and is integrated with

the AppScan® framework for experimental study.

6. Crawling strategies comparison and evaluation:

The experimental results for the standard Depth-First and Breath-First crawling strategies

along with hypercube crawling strategy have been presented. We have also provided the

evaluation of menu crawling strategies against these crawling strategies.

107

7. Transition exploration heuristics

We have also presented experimental results and evaluation of three different heuristics for

the transition exploration phase to help design final crawling strategy.

7.2 Future work

We have presented some promising results; however, there is a lot more to be explored in the area

of RIA crawling. We briefly describe few research directions in this section.

7.2.1 Notion of independent states

A probably future direction in RIA crawling is the identification of independent states. An example of

such scenario will be web applications such as Google calendar [64] or Lucid desktop [15] (open

source web desktop, or web Operating System). Such applications have contents that are

independent of each other. For example, in Google calendar clicking on each day brings up a pop-up

window displaying the schedule and events planned for the day. The contents displayed for each

day is independent of the contents shown for other day. In such scenarios crawling each pop-up

window can be crawled independently of each other. If we do not consider this notion of

independent states then we might end up crawling the different permutations of events present in

one state with events present in other states which could be theoretically infinite.

108

Figure 50: Lucid Desktop [15]screenshot

This situation can be easily visualized in Lucid desktop figure shown above which shows three

different windows open. Each window has its own set of enabled events and each window functions

independently of each other. In such scenario identification of independent states is critical to be

able to completely crawl the web application in reasonable time.

7.2.2 New models

We have already seen that the concept of model-based crawling is able to provide very efficient

results in scenarios where the web application follows the underlying hypothesis. We published

another crawling strategy called “Probability-Model”.

1

2

3

109

[11] introduced another novel idea based on the concept of “model-based crawling” where the

events present in a state are prioritized in their execution order based on their previous execution

behaviours. The probability model assigns Bayesian probabilities to events based on their chances

to discover new states. The probabilities are calculated as the ratio of new states discovered on

execution of an event and the total execution count of the event.

A future direction will be to explore more such possibilities of understanding the structures and

behaviours of RIAs and designing new hypothesis and corresponding crawling strategies.

7.2.3 Notion of important states and events

A third future direction would be to enhance the model-based crawling with the notion of

“important” states and events i.e. some states and events can be configured or determined by the

crawling strategy to be more important than others and can be prioritized in the exploration phase.

This might help web application security assessment tools to prioritize important parts and features

of the web application to be analysed first.

7.2.4 Distributed crawling

Finally, a fourth direction is exploring and using the model-based crawling strategy for distributed

crawling. With cloud computing becoming the new norm of the internet world, exploring these

opportunities to crawl complex RIAs seems an appropriate step ahead.

110

References

[1] J. Garrett, "Adaptive Path," [Online]. Available: http://www.adaptivepath.com/ideas/ajax-new-

approach-web-applications. [Accessed 17 May 2012].

[2] "JavaScript," W3C: World Wide Web Consortium, [Online]. Available:

http://www.w3.org/TR/REC-html40/interact/scripts.html. [Accessed 17 May 2012].

[3] X. Li and Y. Xue, "A Survey on Web Application Security," Nashville, TN USA, 2011.

[4] W. W. W. C. (W3C), "Document Object Model (DOM)," 2005. [Online]. Available:

http://www.w3.org/DOM/. [Accessed 17 May 2012].

[5] "2010 Data Breach Investigations Report," Verizon, 2010.

[6] T. W. A. S. Consortium, "Web Application Security Statistics," [Online]. Available:

http://projects.webappsec.org/w/page/13246989/WebApplicationSecurityStatistics. [Accessed

17 May 2012].

[7] "WhiteHat Website Security Statistics Report," WhiteHat Security, 2011.

[8] J. Bau, E. Bursztein, D. Gupta and J. C. Mitchell, "State of the Art: Automated Black-Box Web

Application Vulnerability Testing," in IEEE Symposium on Security and Privacy, 2012.

[9] K. Benjamin, G. Bochmann, M. Dincturk, G.-V. Jourdan and I. Onut, "A Strategy for Efficient

Crawling of Rich Internet Applications," in Web Engineering: 11th International Conference,

ICWE, Paphos, Cyprus, 2011.

[10] "Rational AppScan family," IBM, [Online]. Available: http://www-

01.ibm.com/software/awdtools/appscan/. [Accessed 17 May 2012].

[11] M. Dincturk, S. Choudhary, G. Bochmann, G. Jourdan, I. Onut and P. Ionescu, "A Statistical

Approach for Efficient Crawling of Rich Internet Applications," in International Conference on

Web Engineering (ICWE 2012), Berlin, Germany, 2012.

[12] S. Choudhary, M. Dincturk, G. Bochmann, G.-V. Jourdan, I. Onut and P. Ionescu, "Solving Some

Modeling Challenges when Testing Rich Internet Applications for Security," in Third

International Workshop on Security Testing (SECTEST 2012), Montreal, 2012.

[13] K. Ayoub, H. Aly and J. Walsh, "Dom based page uniqueness indentification". Canada Patent

CA2706743A1, 2010.

111

[14] B. K, A Strategy for Efficient Crawling of Rich Internet Applications, Master's Thesis, University

of Ottawa, 2010.

[15] "Lucid Desktop," [Online]. Available: http://www.lucid-desktop.org/. [Accessed 17 May 2012].

[16] S. Brin and L.Page, "The Anatomy of a Large-Scale Hypertextual Web Search Engine," in Seventh

International World-Wide Web Conference, Brisbane, Australia, 1998.

[17] "Yahoo! Search," [Online]. Available: http://www.yahoo.com. [Accessed 17 May 2012].

[18] "Bing," [Online]. Available: http://www.bing.com. [Accessed 17 May 2012].

[19] A. Z. Broder, M. Najork and J. L. Wiener, "Efficient URL Caching for World Wide Web Crawling,"

in 12th International Conference on World Wide Web, Budapest, Hungary, 2003.

[20] O. C and N. M, "Web Crawling. Foundations and Trends in Information Retrieval," Foundations

and Trends in Information Retrieval, vol. 4, no. 3, pp. 175-246, 2010.

[21] C. J and G.-M. H, "Estimating frequency of change.," ACM Transactions on Internet Technology,

vol. 3, no. 3, pp. 256-290, 2003.

[22] G. E. Coffmann, Z. Liu and R. R. Weber, "Optimal robot scheduling for web search engines,"

Journal of Scheduling, vol. 1, no. 1, 1998.

[23] J. Bau, E. Bursztein, D. Gupta and J. MitchellL, "State of the Art: Automated Black-Box Web

Application Vulnerability Testing," IEEE Symposium on Security and Privacy, pp. 332-345, 2010.

[24] R. Matter, AJAX Crawl: Making AJAX Applications Searchable, Master Thesis, ETH, Zurich, 2008.

[25] G. Frey, Indexing AJAX Web Applications, Master Thesis, ETH Zurich, 2007..

[26] C. Duda, G. Frey, D. Kossmann and C. Zhou, "AJAXSearch: Crawling, Indexing and Searching Web

2.0 Applications," in VLDB, 2008.

[27] A. Mesbah and A. v. Deursen, "Exposing the Hidden Web Induced by AJAX," TUD-SERG

Technical Report Series, 2008.

[28] D. Roest, A. Mesbah and A. v. Deursen, "Regression Testing Ajax Applications: Coping with

Dynamism," in Third International Conference on Software Testing, Verification and Validation

(ICST 2010), 2010.

[29] C.Bezemer, A. Mesbah and A. v. Deursen, "Automated Security Testing of Web Widget

Interactions," in Foundations of Software Engineering Symposium (FSE), ACM, 2009.

112

[30] A. Mesbah, E. Bozdag and A. v. Deursen, "Crawling AJAX by Inferring User Inferface State

Changes," in 8th Int. Conf. Web Engineering, ICWE, 2008.

[31] A. Mesbah, A. Deursen and S. Lenselink, "Crawling Ajax-based Web Applications through

Dynamic Analysis of User Interface State Changes," ACM Transactions on the Web (TWEB), vol.

6, no. 1, p. a23, 2011.

[32] C. Duda, G. Frey, D. Kossmann and C. Zohu, "AJAXSearch: Crawling, Indexing and Searching Web

2.0 Applications," in VLDB, 2008.

[33] C. Duda, G. Frey, D. Kossmann, R. Matter and C. Zohu, "AJAX Crawl: Making AJAX Applications

Searchable," in IEEE 25th International Conference on Data Engineering, 2009.

[34] D. Amalfitano, A. Fasolino and P. Tramontana, "Reverse Engineering Finite State Machines from

Rich Internet Applications," in 15th Working Conference on Reverse Engineering, Washington,

DC, USA, 2008.

[35] D. Amalfitano, A. Fasolino and P. Tramontana, "Rich Internet Application Testing Using

Execution Trace Data," in Third International Conference on Software Testing, Verification, and

Validation Workshops, Washington, DC, USA, 2010.

[36] E. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik, vol.

1, p. 269–271, 1959.

[37] H. A. Eiselt, M. Gendreau and G. Laporte., "Arc routing problems, part I: the Chinese postman

problem," Operations Research, vol. 43, no. 2, pp. 231-242, 1995.

[38] "Strongly Connected Component," [Online]. Available:

http://en.wikipedia.org/wiki/File:Scc.png. [Accessed 17 May 2012].

[39] H. A. Eiselt, M. Gendreau and G. Laporte., " Arc routing problems, part II: the Rural postman

problem," Operational Research, vol. 43, 1995.

[40] H. Thimbleby, "An algorithm for the directed Chinese Postman Problem (with applications),"

Middlesex University School of Computing Science, London, 2000.

[41] K. P. Eswaran and R. E. tarjan, "Augmentation problems," SIAM]oumal on Computing, vol. 5,

pp. 653-665, 1976.

[42] R. Tarjan, "Testing graph connectivity," in 6th Ann. ACM Symp. on the Theory of Computing,

Seatte, WA, USA, 1974.

[43] R. Tarjan, "Depth-first search and linear graph algorithms," SIAM Journal on Computing Journal,

113

pp. 146-160, 1972.

[44] J. Hopcroft and R. Tarjan, "Efficient algorithms for graph manipulation," Comm. ACM, vol. 16,

pp. 372-378, 1973.

[45] S. Raghavan, "A note on Eswaran and Tarjan’s algorithm for the strong connectivity

augmentation problem," Operations Research, vol. 29, pp. 19-26, 2005.

[46] A. V. Goldberg and R. E. Tarjan, "Finding Minimum-Cost Circulations by Canceling Negative

Cycles," Journal of the ACM, vol. 36, no. 4, pp. 873-886, 1989.

[47] "Eulerian path," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Eulerian_path#cite_note-0. [Accessed 17 May 2012].

[48] "Travelling Salesman Problem," Wikipedia, [Online]. Available:

www.en.wikipedia.org/wiki/Travelling_salesman_problem. [Accessed 17 May 2012].

[49] G. G and P. AP, "Traveling salesman problem and its variations," Dordrecht: Kluwer Academic

Publishers, 2002.

[50] C. Nilsson, "Heuristics for the traveling salesman problem," Linköping University, Sweden, 2003.

[51] L. G, " Modeling and solving several classes of arc routing problems as traveling salesman

problems," Comput Opns Res, vol. 24, pp. 1057-1061, 1997.

[52] M. Blais and G. Laporte, "Exact Solution of the Generalized Routing Problem through Graph

Transformations," The Journal of the Operational Research Society, vol. 54, no. 8, pp. 906-910,

2003.

[53] K. Helsgaun, " An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic,"

European Journal of Operational Research, vol. 126, no. 1, pp. 106-130, 2000.

[54] K. Helsgaun, " An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP

Heuristic.," DATALOGISKE SKRIFTER (Writings on Computer Science), Roskilde University, vol.

109, 2006 (Revised November 2007)..

[55] "The Traveling Salesman Problem," [Online]. Available: http://www.tsp.gatech.edu/. [Accessed

17 May 2012].

[56] "TSPLIB," [Online]. Available: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[Accessed 17 May 2012].

[57] G. Carpento, M. Dell' amico and P. Toth, "Exact solution of large-scale, asymmetric traveling

114

salesman problems," ACM Trans. Math. Softw., vol. 21, no. 4, 1995.

[58] "Clipmarks," [Online]. Available: http://www.clipmarks.com/ . [Accessed 20 February 2012].

[59] "Clipmarks (Local Version: replicated on: 2011/3)," [Online]. Available:

http://ssrg.eecs.uottawa.ca/clipmarks/. [Accessed 17 May 2012].

[60] "Periodic Table," [Online]. Available: http://code.jalenack.com/periodic. [Accessed 17 May

2012].

[61] "Periodic Table (Local version:replicated on: 2011/3)," [Online]. Available:

http://ssrg.eecs.uottawa.ca/periodic/. [Accessed 17 May 2012].

[62] "TestRIA," [Online]. Available: http://ssrg.eecs.uottawa.ca/TestRIA/. [Accessed 17 May 2012].

[63] "Altoro Mutual," [Online]. Available: http://altoromutual.com. [Accessed 17 May 2012].

[64] "Google Calendar," [Online]. Available: http://calendar.google.com. [Accessed 17 May 2012].

