
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Efficient Crawling of Complex Rich Internet Applications

Ali Moosavi, Salman Hooshmand, Gregor v. Bochmann, Guy-Vincent Jourdan, Iosif Viorel Onut

School of Electrical Engineering and Computer Science - University of Ottawa

Introduction – RIAs and Crawling

Crawling is the task of going through all the contents of a web application

automatically. Crawlers are used for content indexing, black-box security

testing, automated maintenance, etc.

Rich Internet Applications (RIAs) are a new generation of web applications

that make heavy use of client side code to present content, using technologies

such as AJAX. RIAs modify the current page with no need to reload the

complete page. This technique has numerous benefits such as better

interactivity, reduced traffic, and better responsiveness.

Traditional web crawlers, however, are unable to explore RIAs. The problem of

crawling RIAs has been a focus for researchers during recent years, and

solutions have been proposed based on constructing a state machine in which:

 State = DOM of the webpage

 Transition = JavaScript event execution

In order to ensure coverage, a crawler has to execute all events from all states.

Methodology – Component-based Crawling

Our method models the RIA in terms of components and their individual states,

hence it is called component-based crawling. In component-based crawling:

Results (cont.)

Acknowledgments

This work is supported in part by IBM and the Natural Science and Engineering

Research Council of Canada.

DISCLAIMER

The views expressed in this poster are the sole responsibility of the authors and do

not necessarily reflect those of the Center for Advanced Studies of IBM.

Motivation and Aim

Conclusions

Component-based crawling provides superior efficiency compared to the

current (DOM-based) methods.

 Exponential speed-up in crawling, hence the ability to crawl websites that

are not crawlable using DOM-based methods

 Reduced model size, leading to more efficient security testing

Results

Current DOM-based solutions are only effective on small-scale RIAs. When faced

with real-life RIAs, they quickly lose scalability and face state space explosion.

The main reason for state space explosion is that different mixtures of the

independent components of a RIA can produce a great variety of DOMs with no

new data.

 Scalability

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

0 5 10 15 20 25 30 35 40 45

Ti
m

e

of Items in the website

ClipMarks

Component-Based Greedy

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

0 5 10 15 20 25 30

Ti
m

e

of Items in the website

Bebop

Component-Based DOM-Based

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

3:21:36

0 20 40 60 80 100

Ti
m

e

of files to show

ElFinder

Component-Based DOM-Based

0

10000

20000

30000

40000

50000

60000

70000

80000

TestRIA Altoro
Mutual

ClipMarks Periodic
Table

Elfinder Bebop

Ex
p

lo
ra

ti
o

n
 C

o
st

Comparison of Crawling Efficiency on 6 Test Cases

DOM-Based Component-Based

State 1

State 2 State 3

State 5

State 4

State 2 State 3 State 1

= + +

State 1

+ State 2 + State 3

+ State 3

+State 4

In the example above, current methods explore the red widget once with the blue

widget open (state 3) and once with the blue widget closed (state 5). These two are

considered as separate states of the application, and no connection is found

between them. This simple website takes hours to be crawled.

Real-world websites contain many independent components. The picture below

shows an example from Facebook.com, with independent components marked

with red borders. Current methods are unable to crawl such complex RIAs.

 We partition each DOM to components (subtrees of the HTML tree)

 The current webpage has a state

 States belong to webpages

set of states

Components

Using component-based crawling, the crawler now knows that the opened red

widget is an already-visited state (state 3), and knows how it behaves. (e.g. the

yellow transition). Therefore, there is no need to explore this branch further.

In component-based crawling, we model the website as a multi-state-machine.

The multi-state-machine can be represented as a tuple 𝑀 = (𝐴, 𝐼, Σ, 𝛿) where A is

the set of states, 𝐼 is the set of initial states (those that are present in the DOM when the

URL is loaded), Σ is the set of events, and 𝛿 is a function 𝐴 × Σ → 2𝐴 that defines

the set of valid transitions. Picture below illustrates modelling of an event execution in our

method versus DOM-based methods.

These charts show the effect of

increasing/decreasing the size of

some websites on total crawling

time. Where DOM-based crawling

time grows exponentially,

component-based crawling is able to

scale nearly linearly.

 Crawling Efficiency

TestRIA Altoro Mutual ClipMarks Periodic Table ElFinder Bebop

DOM-Based 1,003 2,576 12,398 31,814 30,833 72,290

Component-Based 142 308 443 3,856 2,733 293

This chart compares

DOM-based and

component-based

methods on 6 websites,

based on the exploration

cost, which is:

 Model Size

Component-based ModelDOM-based Model

TestRIA:

Altoro Mutual:

ClipMarks:

Component-based crawling yields smaller and simpler models from RIAs, which

increases the efficiency of performing security tests using the models.

𝑛𝑒 + 𝑛𝑟 × 𝑤𝑟

where 𝑛𝑒 is the number

of events executed, 𝑛𝑟
is the number of resets

performed, and 𝑤𝑟 is the

weight of a reset.

DOM-Based

