
The Reconstruction of User-Sessions from HTTP Traces in RIAs

Sara Baghbanzadeh, Salman Hooshmand, Seyed M. Mirtaheri, Muhammad Faheem, Gregor v. Bochmann , Guy-Vincent Jourdan, Iosif Viorel Onut
School of Information Technology and Engineering - University of Ottawa

Introduction Methodology Handling User Inputs

In a Web Application, each user-session generates a series of
HTTP requests and responses regardless of technology/device
used.

It is beneficial to reconstruct user’s session from HTTP traces
for several reasons, including:
• Automatic testing: replaying what a user has done
• Debugging: when a bug is reported, we can reconstruct

what was actually done to automatically reproduce the fault
• Automatic login: Crawlers can learn how to login

automatically to continue their work

We have developed a session reconstruction (SR)
tool which reconstructs user’s session based on a set
of previously recorded HTTP requests/responses.

The SR tool has two components:

1- SR proxy which responds to HTTP requests from
the SR browser based on the traffic captured earlier.
The SR proxy replaces the actual application server.

2- SR browser which loads a page, selects and
executes events on the DOM and communicates with
the SR proxy to rebuild the user session.

The user session is reconstructed using the following
approach:

We try to extract possible values from traces, the SR browser
asks the SR proxy which values should be used

Users enter
values in
forms, can
you detect
these?

Finding the Next User-Interaction

Clicks on html/body/div[7]/…div[2]/a
Clicks on html/body/div[7]/…./div[2]//span

DOM 1 DOM 2 DOM 3

There are typically large number of possible events on
each DOM, so a blind search is not practical. SR-
Browser collaborates with SR-Proxy to find the most
probable user action using following techniques:

• Actionable Elements
• Explicit clues in the next trace
• Implicit clues
• Known JavaScript Libraries
• Early click
• Avoid non-existent click

Other challenges

- Random parameters: There are some random
parameters in generated requests during replay.

TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Handling AJAX

Acknowledgments

This work is supported by Natural Science and Engineering Research Council of

Canada and Center for Advanced Studies, IBM Canada.

DISCLAIMER
The views expressed in this poster are the sole responsibility of the authors and
do not necessarily reflect those of the Center for Advanced Studies of IBM.

Background

Conclusion and Future work

Some methods have been proposed to capture and replay
user’s actions in JavaScript applications, e.g.

• Mugshot : logs sequence of JavaScript events executed in
a browser to be sent to developers for debugging.

• Timelapse : records all events inside browser’s web
debugger, with ability to go back and forth for execution.

• ClickMiner: reconstructs user sessions from traces
recorded by a passive proxy.

However, these have either require installation of additional
software on user’s machine (as in Mugshot and Timelapse)
or has limited support for handling of JavaScript events and
no ability to extract user-inputs (as in ClickMiner).

References
• Neasbitt, Christopher, et al. "Clickminer: Towards forensic reconstruction of user-browser

interactions from network traces." Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014.

• Burg, B., Bailey, R., Ko, A. J., & Ernst, M. D. (2013, October). Interactive record/replay for web application
debugging. In Proceedings of the 26th annual ACM symposium on User interface software and technology (pp.
473-484). ACM.

• Sampath, Sreedevi. "Advances in User-Session-Based Testing of Web Applications." Advances in Computers
86 (2012): 87-108.

• Richards, Gregor, et al. "Automated construction of JavaScript benchmarks." ACM SIGPLAN Notices 46.10
(2011): 677-694.

• Mickens, J. W., Elson, J., & Howell, J. (2010, April). Mugshot: Deterministic Capture and Replay for JavaScript
Applications. In NSDI (Vol. 10, pp. 159-174).

• Atterer, Richard, and Albrecht Schmidt. "Tracking the interaction of users with AJAX applications for usability
testing." Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 2007.

AJAX calls are asynchronous, how does the SR browser
handle this?

• Our SR browser keeps track of sent requests and received
responses.

• No event is selected/executed and no sequence check is
done while we have pending requests.

Experiments

We have tested our tool on several websites. It was able to handle
relatively complex RIAs successfully.

• We have presented a tool to reconstruct user-sessions
from HTTP traces. It includes the ability to fill forms and
work with SSL encrypted sites.

• In the future, we plan to improve the performance of the
tool and connect it to crawlers and testing tools.

Input and Output :
• Input is HTTP traces of user’s previous session recorded by proxy.
• Output is a series of DOMs and the XPath of the elements on which

the user has interacted, and inputs were provided by the user during
the session

User enters ‘John’ in
/html/body/div/…/input[13]
Enters ‘Smith’ in /html/body/…/input[14]
Clicks on /html/body/…/input[15]

Clicks on
html/body/div[7]/div[3]/div/…div[3]/div/
div

Clicks on html/body/div[7]/…./div[2]//span

Based on our methodology, we have used the following
technologies to implement our SR tool:

• SR browser relies on PhantomJS to execute JavaScript
events and get access to the current DOM of the application.

• SR proxy was developed using PHP. Fiddler was used to
capture the user traces.

Implementation

parameters in generated requests during replay.
- Two instances of SR-Browser have been used to detect

these parameters.
- SSL encrypted websites: The generated traffic is

encrypted and SR-Proxy can not see the plain requests.
- A MITM (man-in-the-middle) Proxy has been

implemented to decrypt requests and responses
- We assume that the recorded traffic is decrypted.

